反应谱特征周期的统计分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
特征周期是反应谱的重要参数,是工程抗震设计的关键参数,但物理意义不明确、涉及因素多、结果离散,研究成果相对较少.从反应谱的本质出发,提出了反应谱特征周期的概率法.搜集近期1491条地震记录,采用概率法(97%)和美国FEMA-450(2003)法,以中国抗震规范特征周期分类为依据,研究了反应谱特征周期的统计规律.研究表明:概率法从面积比确定特征周期,力学概念明确,确定标准统一,与美国FEMA-450(2003)法有较好的一致性;近期地震波的特征周期分布特征表明,抗震规范规定的不同场地、不同地震分组的特征周期区段,地震记录数量不同,长周期效应不容忽视.特征周期与震级、场地类别和震中距的关系复杂且离散,特征周期呈区间分布规律,分布区间值较大,区间内部定量关系仍较难确定.特征周期与震级、场地类别和震中距的相关性不明显,反应谱特征周期按场地类别、震中距(地震分组)确定,存在不确定的风险,美国抗震规范以反应谱参数直接确定特征周期的方法,抗震规范修订时值得借鉴.
The characteristic period is an important engineering parameter of acceleration response spectrum,but there are many problem such as illegible physical concept,involving many factors,discrete result distribution and less research in possession.The paper proposes a probabilistic method according to the essence of acceleration response spectrum.The characteristic period was calculated by area ratio of acceleration response spectrum at the point of the characteristic period.Therefore,the characteristic period has distinct mechanics significance.The statistical analysis rules of characteristic period are derived from 1491 recent ground motion records by means of probabilistic method and FEMA-450 method.The results indicate that probabilistic method and FEMA-450 method are good in coherence.The different amounts distribute in different characteristic period range of site and design earthquake group in seismic code of China.And consequently,the long period dynamic effects should not be ignored.The characteristic period covers a large range and disperses.There are no obviously coherence among characteristic period,magnitude of earthquake,site categories and site-source distance.The characteristic period which is determined by site and design earthquake group has more indeterminacy.Thus the suggestion which the characteristic period should be determined by parameters of acceleration response spectrum similar to USA code is proposed when the version of the former "code for seismic design of buildings GB 50011-2001" in China is revised.
引文
[1]GB5001-2001,建筑抗震设计规范[S].GB5001-2001,Code for Seismic Design of Buildings[S].
    [2]IBC.Internatiaonal Building Code[S].International Code Council,2006.
    [3]EC8(2004).Eurocode 8:Design of Structures for Earthquake Resistance.Part 1:General Rules,Seismic Actions and Rules forBuildings[S].London:British Standards Institution,EC8,EN1998-1:2004.
    [4]FEMA 450.Recommended Provisions for Seismic Regulations for New Buildings and Other Structures(Part1:Provision)[R].Wash-ington D C:Federal Emergency Management Agency,2003.
    [5]CECS 160:2004,建筑工程抗震性态设计通则(试行)[S].CECS 160:2004,General Rule for Performance-Based Seismic Design of Buildings[S].
    [6]GB 50191-93,构筑物抗震设计规范[S].GB 50191-93,Design Code for Antiseismic of Special Structures[S].
    [7]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.L Xi-lin,ZHOU Ding-song.Ductility Demand Spectra and Inelastic Displacement Spectra Considering Soil Conditions and DesignCharacteristic Periods[J].Earthquake Engineering and Engineering Vibration,2004,24(1):39-48.
    [8]周锡元,王国权,杨润林,等.1999年9月21日台湾集集地震中不同场地上峰值加速度的衰减规律[C]//编委会编.大型复杂结构的关键科学问题及设计理论研究论文集.哈尔滨:哈尔滨工业大学出版社,2002:406-413.ZHOU Xi-yuan,WANG Guo-quan,YANG Run-lin,et al.The Peak Acceleration Attenuation Law at Different Kinds of Sites in 1999Taiwan Chi-Chi Earthquake[C]//Editorial Board.Report of Key Scientific Problem and Design Theory for Huge Complex Structures.Harbin:Press of Harbin Institute of Technology,2002:406-413.
    [9]DL 5073-2000,水工建筑物抗震设计规范[S].DL 5073-2000,Code for Seismic Design of Hydraulic Structures[S].

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心