大坝抗震安全性研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
论证了大坝抗震安全性研究的实践与发展现状。目前大坝在地震作用下的应力与变形分析方法主要有拟静力法和动力响应分析法,并依据大坝混凝土的抗拉强度判断大坝的安全性;各国规范体现的抗震设防理念和大坝材料的容许应力差别很大。坝址河谷不同高程处地震动状态不尽相同、河谷两恻同一高程处地震动也不一样。混凝土材料的强度与加载速度、应变速率有关;地震时大坝不同部位的应变速率不相同、同一部位的应变速率也随时间变化;混凝土的动态强度既与应变速率有关,也与应变历史等其它因素有关。大坝河谷地震动的输入机理和模型研究、混凝土的动态强度的变化规律探索、大坝抗震安全性评价准则的完善与创新等将有待深入。通过以上内容针对性分析,提出了大坝抗震评价的一些合理建议、方法以及进一步的研究方向。
Practice and existing states of seismic safety research of large dams are demonstrated in this paper.At present,analysis means on the stress and deformation of the large dams under the action of earthquake mainly involve the quasi-static analysis and dynamic response analysis methods,and the judgment on the safety of the large dams is made in accordance with the tensile strength of mass concrete.There is a great difference in terms of anti-seismic idea and the stress allowance of large dam material being stated in the specifications of different countries.There is also different intensity of earthquakes at different altitudes of river valleys on the dam site as well as at the same altitudes on either side of the river valley.The strength of the concrete material is related to the rate of loading and the strain rate.During the earthquakes,the strain rate varies at different positions of the dam and the strain rate at the same position also varies with time.The dynamic strength of the concrete is related to the strain rate as well as to other factors such as strain history.The research into the seismic input mechanism and the model of large dam river valleys,the varied rule of the dynamic strength of the mass concrete,and the improvement and innovation in the large dam seismic safety evaluation are expected to be deepened.Based on the analysis of the corresponding issues mentioned above,reasonable proposals,methods and further research directions for the large dam seismic evaluation have been put forth in this paper.
引文
[1]林皋,陈健云.混凝土大坝的抗震安全评价[J].水利学报.2001,(2):8-15.
    [2]饶宏玲.溪洛渡水电站拱坝坝肩稳定研究[J].四川水力发电.2002,20(1):24-26.
    [3]李瓒.关于龙羊峡拱坝坝肩地震动力反应问题[J].西北水电.2001,(3):25-28.
    [4]张伯艳,陈厚群,杜修力,张艳红.高拱坝坝肩抗震稳定分析[J].水利学报.2000,(11):55-59.
    [5]张伯艳,陈厚群.用有限元和刚体极限平衡方法分析坝肩抗震稳定[J].岩石力学与工程学报.2001,20(5):665-670.
    [6]汝乃华,姜忠胜.大坝事故与安全.拱坝[M].北京:中国水利电力出版社,1995.
    [7]Ren Q.D evelopm ent of theory and m ethods on h igh dam structural analysis[A].New developm ents in dam engineering[C].London,UK:A.A.Balkema pub lishers.2004.63-74.
    [8]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J].岩石力学与工程学报.2004,23(8):1218-1224.
    [9]杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报.1997,14(4):407-412.
    [10]Murthy K S R K and MukhopadhyayM.A daptive fin ite elem ent analysis ofm ixed-mode fracture prob lem s contain ing mu ltiple crack-tips w ithan automatic m esh generator[J].International Journal of Fracture,2001,108:251-274.
    [11]朱万成,唐春安.混凝土断裂过程的力学模型与数值计算[J].力学进展.2002,(4):1-20.
    [12]刘欣.平面裂纹问题的h,p,hp型自适应无网格方法的研究[J].力学学报,2000,32(3):308-318.
    [13]李德玉,侯顺载.高拱坝的动力非线性分析[J].水力发电,1996,(4):44-47.
    [14]崔海涛,温卫东.随机有限元及其工程应用[J].南京航空航天大学学报,2000,32(1):91-98.
    [15]吴清高,张明,姚振汉.混凝土重力坝边界元可靠度计算[J]重庆建筑大学学报,2000,22(6):70-73.
    [16]潘一山,章梦涛.洞室岩爆的尖角突变模型[J].应用数学和力学.1994,15(10):893-900.
    [17]任青文,余天堂.块体单元法的理论和计算模型[J].工程力学.1999,16(1):67-77.
    [18]王瑞骏,陈尧隆.王新宏.重力坝深层抗滑稳定分析的块体单元法[J].水利学报.1998,(1):91-93.
    [19]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [20]刘君,陈健云,孔宪京,林皋.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析[J].大连理工大学学报.2003,43(6):793-798.
    [21]楼梦麟.高拱坝抗震一减震研究的若干问题[J].水利水电技术.1997,28(11):68-70.
    [22]迟世春.不同地震输入对混凝土面板堆石坝动力反应的影响[J].世界地震工程.2002,18(2):70-74.
    [23]迟世春,顾淦臣.混凝土面板堆石坝幅频反应研究[J].岩土工程学报.1996,18(4):75-79.
    [24]DL5073—2000,水工建筑物抗震设计规范[S].
    [25]陈厚群,苏克忠.中国水工结构重要强震数据及分析[M].北京:地震出版社,1999.
    [26]苏克忠.水工建筑物场地的选择与地震动参数的确定[A].水利水电勘探设计标准化[C].1997(4).
    [27]Chopra A K.Earthquake analysis,design and safety evaluation of concrete arch dam[A].Proc..Tenth world conference on earthquake engineer-ing[C],1992,11,6763-6772.
    [28]李湛,栾茂田.考虑强度退化效应的堤坝抗震稳定性评价方法[J].岩土力学(增刊).2004,15(2):409-417.
    [29]Newmark N M.E ffects of earthquakes on dam s and embankm ents[J].Geotechn ique.1965,15(2):139-160.
    [30]Hatan T,Tsutsum iH.Dynam ic compressive deformation and failure of concrete under earthquake load[R].Techn ical report No.C-5904,Techn ical laboratory of the central research institute of electric power industry,1959.
    [31]Hatan T.Dynam ic behavior of concrete under impu lsive tensile load[R].Techn ical reportNo.C-6002,Techn ical laboratory of the central re-search institute of electric power industry.1960.
    [32]Raphael JM..Tensile Strength of Concrete[J].AC I Journal,1984,81(2):158-165.
    [33]B ischoff P H,Perry S H.Compressive behaviors of concrete at h igh strain rate[J].Materials and structures,1991,24:425-45.
    [34]JavierM L,Ross C A.Review of strain rate effects for concrete in tension[J].AC I material journal.1998,95(6):735-739.
    [35]DL 5073-1997,SL203-97.水工建筑物抗震设计规范[S].
    [36]Japan society of civil engineers.Earthquate resistant design for civil engineering structures in Japan[R].1996,16-18.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心