钢筋混凝土框架-联肢剪力墙结构的地震能量分布研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于能量抗震设计需解决的一个重要问题是确定结构累积滞回耗能的分布。该文通过两个具有不同跨高比连梁的钢筋混凝土框架-联肢剪力墙结构,选用一定数量的地震波进行弹塑性动力时程分析,研究了框架-联肢剪力墙结构在地震作用下的累积滞回耗能分配和分布规律。分析研究结果表明:当连梁跨高比合适,可以实现强墙弱(连)梁的屈服模式,连梁可以承担绝大部分耗能,框架梁也可以承担部分耗能,从而降低墙肢的耗能比例,减轻墙肢损伤程度。同时,不同频谱特性地震波虽然不会影响结构中各构件的耗能比例分配,但是会影响各构件的耗能分布模式,因此在确定各构件的层耗能需求时,需要考虑不同耗能分布模式的影响。
The distribution of cumulative hysteretic energy (EH) is a key issue in the structural energy-based seismic design. Two reinforced concrete frame-coupled shear walls with different span-depth ratios in coupling beams were designed and then analyzed by inelastic time-history analysis method under some earthquake records. The distribution of EH among wall limbs、coupling beams and frames are studied, as well as the distribution of EH along different stories. The results show that when the span-depth ratio of the coupling beam is reasonable, the "strong wall limb-weak coupling beam" mode can be achieved and most cumulative hysteretic energy is dissipated by the coupling beam while the damage in the wall limb can be decreased significantly. Besides, the results show that although the distributions of EH among different structural members are steady under the earthquake records with different spectrum characteristics, the distribution of EH along the stories may vary significantly. So the difference in EH distribution along the stories must be considered to determine the energy demands of the structural members in different stories.
引文
[1]Housner G W.Behavior of structures during earthquake[J].Journal of the Engineering Mechanics Division,ASCE,1959,85(4):109―129.
    [2]Akiyama H.Earthquake resistant limit state design for buildings[M].Tokyo:University of Tokyo Press,1985.
    [3]Fajfar P,Gaspersic P.The N2method for the seismic damage analysis of RC buildings[J].Earthquake Engineering&Structural Dynamics,1996,25(1):31―46.
    [4]Fajfar P.Equivalent ductility factors,taking into account low-cycle fatigue[J].Earthquake Engineering&Structural Dynamics,1992,21(9):837―848.
    [5]Teran-Gilmore A,Avila E,Rangel G.On the use of plastic energy to establish strength requirements in ductile structures[J].Engineering Structures,2003,25(7):965―980.
    [6]Panyakapo P.Evaluation of site-dependent constant-damage design spectra for reinforced concrete structures[J].Earthquake Engineering&Structural Dynamics,2004,33(12):1211―1231.
    [7]Akbas B,Shen J,Hao H.Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective[J].Structural Design of Tall Buildings,2001,10(3):193―217.
    [8]Shen J,Akbas B.Seismic energy demand in steel moment frames[J].Journal of Earthquake Engineering,1999,3(4):519―559.
    [9]Chou C C,Uang C M.A procedure for evaluating seismic energy demand of framed structures[J].Earthquake Engineering&Structural Dynamics,2003,32(2):229―244.
    [10]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因索分析[J].重庆建筑大学学报,1996,18(2):21―33.Xiao Mingkui,Liu Bo,Bai Shaoliang.Analysis of the total energy and its influencing factors for seismic structures[J].Journal of Chongqing Jianzhu University,1996,18(2):21―33.(in Chinese)
    [11]肖明葵,刘纲,白绍良.抗震结构的滞回耗能谱[J].世界地震工程,2002,18(3):110―115.Xiao Mingkui,Liu Gang,Bai Shaoliang.The hysteretic energy spectra of seismic structures[J].World Information on Earthquake Engineering,2002,18(3):110―115.(in Chinese)
    [12]史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分配的计算分析[J].西安建筑科技大学学报(自然科学版),2005,37(2):174―188.Shi Qingxuan,Xiong Zhongming,Li Jufang.Calculation analysis of the storey distribution of hysteretic energy for frame structures[J].Journal of Xi’an University of Architecture&Technology(Natural Science Edition),2005,37(2):174―188.(in Chinese)
    [13]程光煜.基于能量抗震设计理论及其在钢支撑框架结构中的应用[D].北京:清华大学土木工程系,2007.Cheng Guangyu.Study on energy-based seismic design methodology and application in steel braced frames[D].Beijing:Department of Civil Engineering,Tsinghua University,2007.(in Chinese)
    [14]刘哲锋,沈蒲生.高层混合结构滞回耗能分布规律的研究[J].工程抗震与加固改造,2007,29(5):7―11.Liu Zhefeng,Shen Pusheng.Evaluation of hysteric energy to input energy ratio in tall hybrid structures[J].Earthquake Resistant Engineering and Retrofitting,2007,29(5):7―11.(in Chinese)
    [15]Decanini L D,Mollaioli F.Formulation of elastic earthquake input energy spectra[J].Earthquake Engineering&Structural Dynamics,1998,27(12):1503―1522.
    [16]Decanini L D,Mollaioli F.An energy-based methodology for the assessment of seismic demand[J].Soil Dynamics and Earthquake Engineering,2001,21(2):113―137.
    [17]Park Y J,Ang A S,Wen Y.Seismic damage analysis of reinforced concrete buildings[J].Journal of Structural Engineering,ASCE,1985,111(4):740―757.
    [18]Kunnath S K,Chai Y H.Cumulative damage-based inelastic cyclic demand spectrum[J].Earthquake Engineering&Structural Dynamics,2004,33(4):499―520.
    [19]中华人民共和国建设部.GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.Ministry of construction of the people’s republic of China.GB50011-2001Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2001.(in Chinese)
    [20]叶列平,陆新征,马千里,汪训流,缪志伟.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,23(增刊II):131―140.Ye Lieping,Lu Xinzheng,Ma Qianli,Wang Xunliu,Miao Zhiwei.Nonlinear analytical models,methods and examples for concrete structures subjects to earthquake loading[J].Engineering Mechanics,2006,23(Sup.II):131―140.(in Chinese)
    [21]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(2):51―60.Wang Yayong,Liu Xiaodi,Cheng Minxian.Study on the input of earthquake ground motion for time-history analysis of structures[J].Journal of Building Structures,1991,12(2):51―60.(in Chinese)
    [22]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33―37.Yang Pu,Li Yingmin,Lai Ming.A new method for selecting inputting waves for time-history analysis[J].China Civil Engineering Journal,2000,33(6):33―37.(in Chinese)
    [23]Trifunac M,Brady A.A study on the duration of strong earthquake ground motion[J].Bulletin of the Seismological Society of America,1975,65(3):581―626.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心