多高层钢结构最佳侧移刚度分布与最佳截面惯性矩分布研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以多高层钢结构在罕遇地震作用下各层的累积塑性变形倍率相等为目标,探讨了多高层钢结构的最佳侧移刚度分布和最佳截面惯性矩分布。建立6层、9层、12层钢框架结构算例模型,利用时程分析法对其进行动力弹塑性时程分析,计算出算例模型各层的累积塑性变形倍率。不断调整算例模型各层的侧移刚度,使算例模型在地震作用下各层的累积塑性变形倍率相等。将此时算例模型各层的侧移刚度与底层侧移刚度的比值称为最佳侧移刚度比。以最佳侧移刚度比为目标,对算例模型进行静力弹塑性分析,各层梁的惯性矩取为底层柱的1/10,调整算例模型各层柱截面的惯性矩,使算例模型的侧移刚度比刚好满足最佳侧移刚度比,将此时结构各层柱截面的惯性矩与底层柱截面的惯性矩之比定义为最佳截面惯性矩比。最后,用一个7层算例模型验证了最佳侧移刚度比和最佳截面惯性矩比的合理性。
In order to study the optimum lateral stiffness ratio and optimum moment of inertia ratio of steel structure,three steel-frame models(6,9,12storey) are designed.Time history method is used to study the earthquake response of the three models.Lateral stiffness of each model is changed to make the cumulative plastic deformation rate of each storey equal.When the cumulative plastic deformation rate of each storey is equal,the ratio of each lateral stiffness and the first storey lateral stiffness of each model is called optimum stiffneness ratio,the ratio of the number of each storey and the total number of the storeies is called the storey ratio.The function between the optimum stiffness and the storey ratio is given using the optimum stiffness ratio and the storey ratio of the three designed models.Optimum moment of inertia ratio is studied using the push-over method under the assumption of optimum lateral stiffness ratio.The function is the criteria that we used to design the steel-frame structure.In order to prove the validity of the function,a 7-storey steel-frame model is designed,which used the optimum stiffness ratio and the liner stiffness ratio respectively.It shows that the cumutive plastic deformation rates of the structure using the optimum stiffness ratio are most the same,which is better than that of the structure using the liner stiffness ratio.
引文
[1]赵光伟,裴星洙,周晓松.基于能量平衡的建筑结构地震响应预测法基础研究[J].工业建筑增刊,2006,36:182~187Zhao Guang-wei,Pei Xing-zhu,Zhou Xiao-song.Thefundamental research on prediction method of structuralearthquake response based on energy balance[J].Industrial Construction,2006,36:182~187(inChinese)
    [2]裴星洙,廖红建,张立.基于性能设计的建筑振动解析[M].西安:西安交通大学出版社,2004Pei Xing-zhu,Liao Hong-jian,Zhang Li.SeismicResponse Analysis Methods for Performance BasedDesign[M].Xi’an:Xi’an JiaoTong University Press,2004(in Chinese)
    [3]瞿岳前,梁兴文,田野.基于能量分析的地震损伤性能评估[J].世界地震工程,2006,22(1):109~114Qu Yue-qian,Liang Xing-wen,Tian Ye.Evaluation ofseism ic damage performance based on energy analysis[J].World Earthquake Engineering.2006,22(1):109~114(in Chinese)
    [4]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报,2000,21(1):37~43Ye Liao-yuan,Pan Wen.The Principle of NonlinearStatic Analysis(Push-over)and Numerial Examples[J].Journal of Building Structures,2000,21(1):37~43(in Chinese)
    [5]GB50011—2001,建筑结构抗震设计规范(修订版)[S]GB50011—2001,Code for seismic design of buildings[S](in Chinese)
    [6]肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程,2006,22(3):89~94Xiao Ming-kui,Liu Gang,Bai Shao-liang.Some methodsof selecting earthquake wave based on energy responses[J].World Earthquake Engineering,2006,22(3):89~94(in Chinese)
    [7]秋山宏.エネルギ-の钓合に基づく建筑物の耐震设计[M].技报堂出版,1999:51Hiroshi Akiyama.Earthquake-Resistant Design Methodfor Buildings Based on Energy Balance[M].JiBaoTangPress,1999:51(in Chinese)
    [8]谢小松,周瑞忠.半刚性连接钢框架结构抗震的时程计算及实例分析[J].福州大学学报(自然科学版),2004,32(2):184~185Xie Xiao-song,Zhou Rui-zhong.Seismic time-historyanalysis of steel frame with semi-rigid connections[J].Journal of Fuzhou University(Natural Science),2004,32(2):184~185(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心