地震总输入能自抵耗效应研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过对单自由度(SDOF)体系弹性和弹塑性地震能量反应的计算,提出了自抵耗能和自抵耗系数的概念,并计算了弹性SDOF体系在地震动作用下的地震总输入能、自抵耗能、地震输入能以及自抵耗系数与体系自振频率和阻尼比的关系。结果表明:当体系自振频率等于地震动卓越频率时,自抵耗系数最小,地震输入能最大,结构的自抵耗能力较弱,且阻尼比对地震输入能的幅值影响较大;当自振频率远离地震动卓越频率时,自抵耗系数增大,地震输入能减小,结构的自抵耗能力增强,且地震输入能受体系的自振频率影响较大,基本上不受阻尼比的影响。文中从能量的角度对汶川地震中的一些实际震害作了相关解释。
In this paper, based on the elastic and inelastic energy response analysis for SDOF system, the concepts for both self-dissipation energy and self-dissipation coefficient are proposed. Based on the elastic energy response analysis of an SDOF system subjected to the earthquake excitation, the relations among earthquake total input energy, self-dissipation energy, earthquake input energy, self-dissipation coefficient, natural frequency and damping ratio are calculated. The results indicate that when the natural frequency equals to or is close to earthquake dominant frequency, the self-dissipation coefficient is smaller, the earthquake input energy is larger, the capability of self-dissipation of the structure is weaker and the damping ratio has a bigger impact on the peak value of earthquake input energy. When the natural frequency is far away from the earthquake dominant frequency, the self-dissipation coefficient increases, the earthquake input energy decreases, the capability of self-dissipation becomes stronger, the natural frequency of the structure has a bigger impact on the earthquake input energy, and the damping ratio is unrelated with the earthquake input energy. Some seismic damage cases in Wenchuan earthquake are explained from the perspective of energy.
引文
[1]Sucuoglu H,Nurtug A.Prediction of seismic energy dissipation in SDOF systems[J].Earthquake Engineering&Structural Dynamics,1995,24:1215-1223.
    [2]Fajfar P,Vidic T,Fischinger M.Seismic demand in medium and long period structures[J].Earthquake Engineering&Structural Dynamics,1989,18:1133-1144.
    [3]Uang C M,Bertero V V.Evaluation of seismic energy in structures[J].Earthquake Engineering&Structural Dynamics,1990,19:77-90.
    [4]Housner G.Limit design of structures to resist earthquakes[C]∥Proceedings of the First World Conference on Earthquake Engineering.Califor-nia:EERI,1956:5(1-13).
    [5]Akiyama H.Earthquake-Resistant Limit-state design for buildings[M].Tokyo:University of Tokyo Press,1985:372.
    [6]Beaero V V.Uang C M.Issues and Future Directions in the use of an energey approach for seismic-resistant design of structures[C]∥Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings.Amsterdam:Elsevier Applied Science.199l,2:3-22.
    [7]Fajfar P.Consistent inelastic design spectra:hysteretic and input energy[J].EESD,1994,23:523-537.
    [8]Mario Rodriguez.A measure of the capacity of earthquake ground motions to damage structures[J].Earthquake Engineering and Structural Dynam-ics,1994,23(2):112-118.
    [9]Ye L P,Otani S.Maximum seismic displacement of inelastic systems based on energy concept[J].Earthquake Engineering and Structural Dynam-ics,l999,28:1483-1499.
    [10]Erberik A,Sucuoglu H.Seismic energy dissipation in deteriorating systems through low—cycle fatigue[J].Earthquake Engineering&Structural Dynamics,2004,33:49-67.
    [11]Ordaz M,Huerta B,Reinoso E.Exact computation of input-energy spectra from Fourier amplitude spectra[J].Earthquake Engineering&Struc-tural Dynamics,2003,32:597-605.
    [12]Teran—Gilmore A,Avila E,Rangel G.On the use of plastic energy to establish strength requirements in ductile structures[J].Engineering Struc-tures,2003,25:965-980.
    [13]Anil K.Chopra.Dynamics of structures:Theory and applications to Earthquake Engineering[M].New Jersey:Prentice,2004.
    [14]薄景山,齐文浩,刘红帅,等.汶川特大地震汉源烈度异常原因的初步分析[J].地震工程与工程振动,2009,29(6):53-64.
    [15]孙景江,唐玉红,孙忠贤,等.汶川地震Ⅷ度和Ⅶ度区城市房屋震害及若干典型震害讨论[J].地震工程与工程振动,2009,29(6):65-73.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心