JS鼠标移动切换图片
 
水介质中声波非线性相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据声波的非线性传播机理,推导了声波非线性相互作用的幅值解,仿真研究了声波非线性作用后的能量转移现象,实验验证了相关理论。根据海洋介质的物理特征和声波传播特性,初步构建了海洋介质中声波非线性相互作用的动力学模型,利用非线性动力学理论中的混沌判断方法,仿真分析了声波经动力学模型后声能量变化的动态演化过程,并基于仿真结果,提出利用声波之间非线性相互作用降低低频声波能量的技术方案,随后的实验结论验证了提出的方案。
     本文主要做了以下几方面工作:
     1.本文阐述了非线性声学的发展进程,包括水介质中混沌现象的研究和非线性声学与非线性动力学交叉领域的研究。上世纪中期以来,声学工作者取得了一系列研究进展,特别是从声波之间非线性相互作用的研究得知,声学非线性是一个值得人们花费大气力进行研究和探索的领域。声学中的非线性直接或间接地推动着人们在声学科学方面的进步,对未来非线性声学的发展奠定了一定的基础。
     2.本文分析了线性系统与非线性系统输出的动力学特性,说明了非线性系统对本文研究的重要性。利用拉普拉斯变换求解了二阶变参量微分方程的解析解。以单自由度Duffing系统为例,利用非线性动力学理论的混沌判断方法,仿真分析了系统参数或外部激励参数对系统输出动力学特性的影响,确定了系统处于不同运动状态的参数阈值,进而引出水介质中声波非线性变参量相互作用的数学机理。
     3.本文根据非线性声学的声波传播理论,利用非线性波动方程求解了单频大振幅声波非线性传播后声波幅值的表现形式,数值分析了单频大振幅声波生成多阶谐波的过程中基频波与各阶谐波之间的能量转移过程。从Burgers方程出发,利用谱分解法对低频声波与高频声波(大振幅波)非线性相互作用过程进行了理论推导,给出了相互作用后低频声波的幅值解,仿真分析了两波不同初始相位差、频率比及声源级对低频声波能量变化的影响。实验研究了两波非线性相互作用后声能量的转移问题,在误差允许范围内,两波相互作用后低频声波能量变化的实验结果与仿真结果存在一定吻合。当三列声波频率满足谐振条件时,理论推导了声波非线性相互作用后三列声波的幅值表现形式,数值计算了有、无耗散时声波能量随传播距离,高频声波幅值、频率,介质非线性参数的变化曲线。实验研究了三列声波非线性相互作用后低频声波的能量降低和放大效果,表明高频声波的声源级在一定范围内,可获得实验结果与仿真结果较为一致的低频声波放大或降低效应。
     4.本文建立了海洋介质中声波非线性相互作用的经验模型,分析了系统中非线性模块、放大模块、延迟模块及模块中各参数对声波输出能量的影响。研究了开环控制与闭环控制的特点。用混沌动力学理论分析了声波经开环控制与闭环控制系统后输出的时域图、功率谱图、相图及最大Lyapunov指数,表明开环控制系统可以改变声波的频谱结构,但不能使输出声波呈现混沌状态。研究了低频声波在外界高频扰动作用下,经非线性反馈控制系统后输出的时域图、功率谱图、相图及最大Lyapunov指数,表明高频外激励扰动下的反馈控制系统可以使低频声波输出的频谱结构改变,并在合适参数的控制作用下,系统输出可呈现混沌状态、输入的低频声波频带展宽,能量变化。最终,选取不同的外部激励参数作用于非线性控制系统干扰低频声波,表明外部小幅值的高频扰动有利于使低频声波经非线性控制系统后输出呈现混沌状态,能量降低。由此,初步建立海洋介质中声波非线性相互作用后声能量转换的系统模型。
     5.上述各方面的研究工作,均是在导师的创新思想指导下,在自制水池中进行了相关实验研究,这些实验支持了论文中的部分理论研究成果。实验中也发现了一些新的特殊现象,这些工作为后续进一步开展研究工作提供参考。
According to the acoustical nonlinear propagation theory, the amplitude solution ofnonlinear sounds mutual impact is proposed in the paper. The phenomena of energytransmitting with the nonlinear sounds mutual impact are also modeled, and someexperiments are carried out to verify the conclusions. According to the physical characteristicsof ocean medium and the feature of sound propagation, preliminarily develop a sounds mutualimpact dynamical model; then, model and analyze the energy dynamic evolution after soundpassing the model by using the chaos judgment method, which is from nonlinear dynamicstheory. finally, based on the simulation results, propose a technical solution to decreaselow-frequency parts energy of sounds by using the nonlinear mutual impact of the sounds.The verification results support the technical proposal.
     This paper mainly conduct the following researchs:
     1. This paper describes the development of nonlinear acoustics, including the researcheson chaotic phenomenon of the water medium, the cross areas of nonlinear acoustics anddynamics. A lot of achievements are obtained on this area since1950s. From the researches onthe nonlinear effect of acoustic waves, the research on nonlinear acoustics is a field need tobe investigated more manpower. The nonlinear acoustics brought many improvements onacoustical techniques directly or indirectly, and formed a good basis for future research.
     2. This paper analysised kinetics characteristics of the output in the linear system andnonlinear system, explained the the importance of the nonlinear system. Solved the analyticalsolution of the second order variable parametethe differential equation by using Laplacetransform. Taking single freedom Duffing system for example. By using nonlinear dynamicstheory of chaos judge method, this paper analysised the effect of the system parameters orexternal incentive system to the kinetics characteristics of the system output, confirmed theparameters threshold of the system in different motion state Then draw out mathematicalmechanism, which the interaction of the nonlinear variable parameter acoustic wave in thewater medium.
     3. Based on the theory of wave propagation in nonlinear acoustics, amplituderepresentation of the single frequency large-amplitude sound wave after nonlinearpropagation is solved through the nonlinear wave equation. The energy transfer between thefundamental frequency wave and higher order harmonic waves generated in propagation issimulated. From the Burgers equation, the spectral decomposition method is applied to analyze the nonlinear interactions between the low-frequency weak signal wave and pumpwave (large amplitude wave). The effects of various initial phase differences, frequency ratiosand source levels between the two waves on change of the low-frequency signal energy aresimulated and the amplitude solution of the low-frequency weak signal is given. The energytransfer between the two waves in interaction is studied and result of energy changes of thelow-frequency wave in experiment conform to that in the simulation. The amplituderepresentations of three resonant waves after interaction are derived. The variation curves ofwave energy with and without dissipation are given respectively through numericalcalculation under the conditions of various propagating distances, medium nonlinearparameters and amplitude and frequency of pump waves. The effects of energy reduction andamplification of the low-frequency weak wave after interaction are studied by experiments,which show that values of the reduction and amplification obtained in experiments areconsistent with those of the simulation when source level of the pump wave is within certainlimits.
     4. In this paper, the empirical model of sound wave nonlinear interaction in marinemedium is built, which is used to analyze the influence of nonlinear module, amplificationmodule, delayed module and various parameters of the system on the output sound energy.Automatic control theory is applied to study the features of open-loop control and closed-loopcontrol. The system output dynamic characters are analyzed by chaos dynamic theory with thegraphs of time-domain, power spectrum, phase diagram and maximum Lyapunov exponentunder the open-loop control and closed-loop control. The research show that open-loopcontrol system can change the sound spectrum, but unable to turn the output wave spectruminto chaos status. The low-frequency wave of the feedback system under the externalhigh-frequency excitation is studied with the graphs mentioned above and the results indicatethat the feedback control system can change the frequency spectrum of the output signalunder the excitation. System output signal energy will present the chaos status and frequencyband of the low-frequency wave will appear widening when the control parameters arewell-chosen. Finally, various parameters of external excitation are chosen to act on thenonlinear control system to interfere the low-frequency wave, which demonstrate that smallextent of external high-frequency disturbance is conductive to lead the low-frequency wave toachieve the chaos status and show energy decrease through nonlinear control system. Theenergy transfer model of sound wave nonlinear interactions in marine medium is establishedpreliminarily.
     5. Each aspect of research above has been done in the innovative guidance of tutor. The related experiments in the tank and the small flume support the results of theoretical studies inthe thesis. Some new special phenomenon has been found in the experiments, which providereference for subsequent research.
引文
[1]何祚镛.水下噪声及其控制技术进展和展望.舰船科技.2002.21(1):26-34页
    [2]钱祖文.非线性声学概述.物理.1991.20(5):261~265页
    [3] L D Landau. Lifshitz E M. Fluid mechanics, course of theoretical physics. Vol.6. NewYork: Pergamon Press.1959
    [4]陈树辉.强非线性振动系统的定量分析方法.科学出版社.2007
    [5]陈立群,刘延柱.非线性动力学.上海交通大学出版社.1999
    [6]黄永念.非线性动力学引论.北京大学出版社.2009
    [7]聂春燕.混沌系统与弱信号检测.清华大学出版社.2008
    [8]邹恩,李祥飞,陈建国.混沌控制及其优化应用.国防科技大学出版社.2002
    [9]徐丰.混沌在水声信号检测中的应用.西北工业大学硕士学位论文.2001
    [10]乐波.基于混沌振子与小波的低信噪比信号检测研究与应用.电子科技大学博士学位论文.2009
    [11] T Yang, L O Chua. Secure communication via chaotic parameter modulation. IEEETrans. Circuits Systems-I.1996.43(9):817-819P
    [12]赵耿,郑德玲,方锦清.混沌保密通信的最新进展.自然杂志.2001.23(2):97-106页
    [13] F Tang. An adaptive synchronization strategy besed on active control for demodulatingmessage hidden in chaotic signals. Chaos Solitons Fract.2008.37(4):1090-1096P
    [14]王明军.混沌控制、同步及在保密通信中的应用.大连理工大学博士学位论文.2010
    [15] S Banerjee. Synchronization of time-delayed systems with chaotic modulation andcryptography. Chaos Solitons Fract.2009.42(2):745-750P
    [16]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社.2010
    [17] http://www.fyjs.cn/viewarticle.php?id=44683
    [18]史广智,胡均川,笠良龙.基于模型匹配的舰船螺旋桨噪声特征精细分析.2009.34(5):401-407页
    [19]孙雪容,朱熹.船舶水下结构噪声的研究概况与趋势.振动与冲击.200524(1).106-113页
    [20]俞孟萨,黄国荣,伏同先.潜艇机械噪声控制技术的现状与发展概述.船舶力学.2003.7(4):110-120页
    [21] B Riemman. The propagation of plane sound waves of finite amplitude. In: Beyer BT.Nonlinear acoustics in fluids. Brown University, Province, Rhode Island, VNR Comp.1984.42~60P
    [22] S Earnshaw. On the mathematical theory of sound. Phil Trans Roy Soc.1859.8:75~102P
    [23] H Hugoniot. Memoir on the propagation of motion in bodies, especially in a perfect gas.In: Beyer B T. Nonlinear acoustics in fluids. Brown University, VNR Comp.1984.77~89P
    [24] W Rankine. On the thermodynamic theory of waves of finite longitudinal disturbance.In: Beyer B T. Nonlinear acoustics in fluids. Brown University, VNR Comp.1984.65~76P
    [25] O V Rudenko, S I Soluyan. Theoretical Foundations of Nonlinear Acoustics. New York,Plenum.1977.274P. Moscow, Nauka.1975.287P
    [26] D T Blackstock. Connection between the Fay and Fubini solutions for plane soundwaves of finite amplitude. J Acoust Soc Am.1966.39:1019~1026P
    [27] B B Cary. Nonlinear losses induced in spherical waves. J Acoust Soc Am.1967.42:88P
    [28] P J Westervelt. Parametric acoustic array. J Acoust Soc Am.1963.35(4):535-537P
    [29] F H. Fenlon. An Extension of the Bessel-Fubini Series for a Mutihle-Frequency CWAcoustic Source of Finite Amplitude. J Acoust Soc Am.1972.51(1):284-289P
    [30] F H Fenlon. A Recursive Procedure for Computing the Nonlinear Spectral Interactionsof Progressive Finite-Amplitude Waves in Nondispersive Fluids. J Acoust Soc Am.1971.1299-1312P
    [31] M E Schaffer, D T Blackstock. Modulation of small-signal wave by a finite-amplitudewave of lowe frequecy. J Acoust Soc Am.1975.57. S73P
    [32] В А Зверев, А И Калачев. Модуляция звука звуком припересечении акустическихволн. Акуст Журн.1970.16(2):245-257P
    [33] С Н Гурботов. Параметрическое взаимодействие и усиление случайных волн внедиспергирующей среде. Акуст журн.1980.26(4):551-559P
    [34] А М Гаврилов, О А Савицкий. К вопросу об исполь-зовании эффектавырожденного параметрического усиления. Акуст журн.1992.38(4):671-676P
    [35] О В Рубенко. О параметрическом взаимодействий слабых ультразвуковыхсигналов с мощными низкочастотными акустическими возмущениями. Акустжурн.1974.20(1):108-111P
    [36] M B Moffett, W L Konral, L F Carlton. Experimental demonstration of the absorption ofsound by sound.1978.63:1048-1051P
    [37] P J Westervelt. Scattering of sound by sound. J Acoust Soc Am.1957.29:199~203P
    [38] В А Красильников, О В Руденко, А С ЧИРКИН. О поглощении звука малойамплитуды вызываемом взаимодействием с шумом. Акуст журн.1975.21(1):124-126P
    [39] А М Гаврилов, О А Савицкий. Активное нелинейного поглощения звука вквадратично-нелинейных средах без дисперсии. Акуст журн.1997.43(1):42-47P
    [40] А М Гаврилов, А К Батрин. Фазозависимые нелинейные процессы привзаимодействии волн с кратными частотами и использование их длядиагностикиакустических неоднородностей сред. Акустика неоднородных сред.ЕжегодникРоссийского акустического общества.Труды научной школы проф. С. А Рыбака. М.,Изд-во Тровант.2005.99–109P
    [41] Z W Qian, D Y Shao. Parametric waveforms and spectra of the primary pulse with twokinds of envelops. Chinese Phys Lett.1986.3:417-420P
    [42]马大猷.现代声学理论基础.科学出版社.2004
    [43] А М Гаврилов, А К Батрин. Нелинейное поглошение звука звуком привзаимодействии волн с кратными частотами. Акуст журн.2007.53(2):185-190P
    [44]钱祖文.水中气泡之间的声相互作用.物理学报.1981.30(4):442-447页
    [45]钱祖文.球形粒子之间的声相互作用.物理学报.1981.30(4):432-441页
    [46]钱祖文.平面波与平面行波脉冲的声相互作用.物理学报.1988.37(2):221-228页
    [47]钱祖文.我国非线性声学方面的研究进展.物理.1999.28(10):593-600页
    [48]钱祖文.非线性声学.科学出版社.2009
    [49]冯绍松,章瑞铨.非线性声学及其在水声学中的应用.物理学进展.1996.16(3,4):299-302页
    [50]杜功焕,龚秀芬.在强无规噪声场中有规声能量的抑制.声学学报.1984.9(3):129-133页
    [51] J Lü, Z Y Zhao, C Zhou and Y N Zhang. Effect of finite-amplitude acoustic wavenonlinear interaction on farfield directivity of sound source. Acta Physica Sinica.2011.60(8):084301-1~084301-8P
    [52] J Lü, Z Y Zhao, C Zhou. Properties of infrasonic wave nonlinear propagation in theInhomogeneous moving atmosphere. Acta Physica Sinica.2011.60(10):104301-1~104301-10P
    [53] Т Д Мюир. Нелинейная акустика и ее роль в геофизике морских осадков. В сб.Акустика морских осадков мир.1977.226-273P
    [54] M Farady Philops. On a peculiar class of acoustical figures and on certian formsassumed by groups of particles upon vibrating elastic surface. Tans R Soc London.1831.121(1):299-340P
    [55] W Charles Smith, J Manu Tejwani, A Dale. Farris Phys Rev Lett.48:1982.492P
    [56] M Mendoza, S Succi, H J Herrmann. Taylor-Couette Instability in General Manifolds: ALattice Kinetic Approach. Physics Fluid Dynamics.2012
    [57] R J Wei, B R Wang, Y Mao, et al. Further investigation of nonpropagating solitons andtheir transition to chaos. J Acoust Soc Am.1990.88:469-472
    [58]王本仁,缪国王,魏荣爵.在液氮及水中声次谐波的实验观察.物理学报.1984.33(3):434-436页
    [59] W Lauterborn, U Parlitz. Methods of chaos physics and their application to acoustics. JAcoust Soc Am.1988.84:1975-1993P
    [60] D Y Maa, K Liu. Nonlinear standing waves: Theory and experiment. J Acoust Soc Am.1995.98(5):2753-2763P
    [61]赵翔,徐健学.有限振幅驻波声场中分岔的数值研究.声学学报.1999.24(4):424-428页
    [62]陈赵江,张淑仪,郑凯高.功率超声脉冲激励下金属板的非线性振动现象研究.物理学报.2010.59(6):4071-4083页
    [63] X L Wang. Internal subharmonic resonance in Faraday experiment. Chin Phys Lett.2000.17(8):680-582P
    [64]倪皖荪,魏荣爵.含二次非线性项受迫振动系统中的分岔与混沌现象.物理学报.1985.34:503~511页
    [65] G Q Miao, Q Tao, W Ni, et al. Bifurcation, chaos and hysteresis in electrodynamic coneloudspeaker. WESTPAC Ⅲ88. Shanghai.1988.885~888P
    [66]吴辉,黄君宝.风暴潮中风与水位非线性作用效应研究.海洋通报.2009.28(3):16-21页
    [67] L Rayleigh. On convection currents in a horizontal layer of fluid, when the highertemperature in on the under side. Phil Mag.1916.32:529~546P
    [68] W Lauterborn, E. Cramer. Subharmonic route to chaos observed in acoustics. Phys RevLett.1981.47:1445~1448P
    [69] M Kremliovsky, J Kadtke. Charaeterization of DolPhin Aeoustie Eeho-Loeation DataUsing A Dynamieal Classifieation Method. Int. J. Bifureation and Chaos.1998.8:813-823P
    [70] J H Melvin, D Marandino, E J Sullivan. Bispectrum of ShiP-radiated Noise. J AcoustSoc Am.1989.85(4):1512-1517P
    [71] J B Kadtke. Charaeterization of Transient Signals. ONR-Oeean, Atmosphere, and SpaeeFY97Annual RePorts.1998
    [72] W Lauterborn, E Sehmitz, A Judt. Experimental APProach to A Complex AeousticSystem. Int. J. Bifurcation and Chaos.1993.3:635-642P
    [73] M Hinih, E Mendes, L Stone. Detecting Nonlinearity in Time Series: Surrogate andBootstrap Approaches. Studies in Noinear Dynamics and Econometrics.2005.9(4):1268-1268P
    [74] J H Melvin, D Marandino, E J Sullivan. Bispectrum of ShiP-radiated Noise. J AcoustSoc Am.1988.85(4):1512一1517P
    [75] Haykin. Adaptive Blind Signal and Image Processing. Blind. Deconvolution.1994
    [76] T W Frison, et al. Chaos in ocean Arbient”Noise”. J Acoust Soc Am.1996.99(3):1527-1539P
    [77] A Alvarez, C Harrison, M Siderius. Predicting underwater ocean noise with geneticalgorithms. Physics Letters A.2001.280:215-220P
    [78]章新华,张晓明,林良翼.船舶噪声的混沌现象研究.声学学报.1998.23(2):134-140页
    [79]许振夏.非线性声学的水下应用.声学技术.1992.11(1):7-12页
    [80]唐震,程玉胜.舰船辐射噪声的分形布朗运动模型.青岛大学学报.2002.15(3):63-65页
    [81]宋爱国,陆佶人.基于极限环的舰船噪声信号非线性特征分析及提取.声学学报.1999.24(4):407-415页
    [82]李亚安,徐德民,张效民.基于混沌理论的水下目标信号特征提取研究.兵工学报.2002.23(2):279-281页
    [83]李钢虎,李亚安,贾雪松.水声信号的混沌特征参数提取与分类研究.西北工业大学学报.2006.24(2):170-174页
    [84]朱石坚.舰艇减振降噪系统中的混沌隔振技术研究.国防科技大学博士学位论.2006
    [85]楼京俊.基于混沌理论的线谱控制技术研究.海军工程大学博士学位论文.2006
    [86]樊京,刘叔军,盖晓华,崔世林. Matlab控制系统应用与实例.清华大学出版社.2008
    [87] P S Linsay. Period doubling and chaotic behavior in a driven anharmonic o scillator.Physical Review Letters.1981.9(47):1349~1352P
    [88] С Н Гурбатов. параметрическое взаимодействие и усиление случайных волн внедиспергирующей среде. Акуст журн.1980.26.551-559P
    [89] А В Ненашев. Применение многомерного преобразования Лапласа для анализапараметрических и нелинейных процессов и устройтв. Математические методы врадиотехнике.2006.12.18-21P
    [90]张琪昌,王洪礼,竺致文,沈菲,任爱娣,刘海英.分岔与混沌理论及应用.天津大学出版社.2005
    [91]张化光,王智良,黄伟.混沌系统的控制理论.东北大学出版社.2003
    [92]周纪卿,朱因远.非线性振动.西安交通大学出版社.1998
    [93] G Duffing. Erzwungene Schwingungen bei Veraderlisher Eigenfrequenz undihreTechnische Bedeutung. Vieweg.1918
    [94]钱祖文.非线性声学.科学出版社.1997
    [95] С В Петровский, П П Ширшова. Точные решения уравнения Бюргерса систочником. Журнал технической физики.1997.69(8):10-14P
    [96] Б К Новиков, О В Рруденко. О вырожденном параметрическом усилении звука.Акуст журн.1976.22(3):461-462
    [97] Y R Shen. Nonlinear Infrared Generation.(Berlin:Springer-Verlag).1977
    [98] О В Руденко, С И Солуян. Теоретические Основы Нелинейной Акустики.(Россия:Наука издательство).1975:145-146
    [99]季家镕,冯莹.高等光学教程--非线性光学与导波光学.科学出版社.2008
    [100] С А Ахманов, Р В Хохлов. Проблемы Нелинейной Оптики.1964. ВИНИТИ
    [101]余玮,徐至展,马锦绣,陈荣清.等离子体拍频波加速器中三波相互作用的时间发展.物理学报.1993.42431-436页
    [102] J M Manley, H E Rowe. Proc. IRE.1959.47.2115P
    [103]石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科技大学出版社.2005
    [104]王竹溪,郭敦仁.特殊函数概论.北京大学出版社.2000
    [105]侍茂琮.物理海洋学.山东教育出版社.2004
    [106]雷桑诺夫,布列霍夫斯基赫.海洋声学基础.海洋出版社出版.1985
    [107]叶安乐,李凤琦.物理海洋学.青岛海洋大学出版社.1994
    [108]冯士筰,李凤岐,李少箐著.海洋科学导论.高等教育出版社.2007
    [109]朗道.连续介质力学.北京:人民教育出版社.1978:394-401
    [110]吴玉林.粘性流体力学.中国水利水电出版社.2007
    [111]杨文泽.声波在气固两相流介质中传播特性的实验研究.华北电力大学.2008
    [112] Physics of Sound in the Sea: Part IV, Acoustic Properties of Wakes, Nat. Def. Res.Comm. Div.6Sum. Tech. Rep8.1947.460~474P
    [113] U Parlitz, V Englisch, C Scheffczyk, and W Lauterborn. Bifurcation structure ofbubble oscillators. J Acoust Soc Am.1990.88(2):1061-1077P
    [114] W Lauterborn, T Kurz. Physics of bubble oscillations. Rep. Prog. Phys.2010,9:2-15P
    [115]朱哲民,杜功焕.含气泡水的强非线性声学特性.声学学报.1995.20(6):425-431页
    [116]冯若,龚秀芬,朱正亚,石涛.生物媒质中非线性声学参量习B/A的研究.物理学报.1984.33(9):1282-1286
    [117]赵晓光,朱哲民.含气泡液体中传播的解析解及强非线性声特性.应用声学.1999.18(6):18-23
    [118]方勇纯.非线性系统理论.清华大学出版社.2009
    [119]孙湘平.中国的海洋.商务印书馆.1995
    [120] Л С Виленчик, Ю В. Иванов, В П Трофимов. Цифровое математическоемоделирование фрактальной нелинейной параметрической динамикиповерхностных морских волн. Матем. Моделирование.2008.5:93-109P
    [121] Л М布列霍夫斯基著.杨训仁译.分层介质中的波.科学出版社.1960
    [122]祝明波译.海杂波的混沌动态特性.国防工业出版社.2007
 

© 2004-2012 中国地质图书馆版权所有 京ICP备05064691号 信息技术室维护

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700