用户名: 密码: 验证码:
大曲率连续钢箱梁桥结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯钢箱梁桥具有外形简洁美观、结构自重轻、受力性能好、抗扭刚度大、加工方便、施工期短、总体造价不太高、能够很好地适应地形地物限制要求等优点,在城市高架桥、立交桥等大型交通枢纽中,尤其在跨线、跨越地裂缝等特殊场合下应用非常广泛,发展前景非常广阔。对于大曲率连续弯钢箱梁桥的研究有着重要的现实意义。
     本文对于大曲率连续弯钢箱梁桥的极限承载力和剪力滞效应进行了系统的研究。首先,对于大曲率连续弯钢箱梁桥结构承载力的概念、类型和稳定问题的类型、分析原则、计算方法以及极限承载力的求解技术、剪力滞效应的基本概念等分别进行了探讨。其次,运用有限元建模对结构极限承载力进行全过程分析,包括容许应力控制下承载力分析、稳定屈曲特征值分析、非线性状态结构极限承载力分析。把加劲肋的面积平摊在箱梁盖板上,将钢箱梁简化为普通箱梁,再采用变分法求解,并与空间有限元法求解进行对比,提出无悬臂板钢箱梁剪力滞系数的近似计算方法。然后,根据实桥结构的材料特性、空间尺寸、连接方式等,按照1:10的比例制作了全桥缩尺模型,用该模型桥进行试验研究。通过试验和理论计算结果的分析对比,来研究弯钢箱梁桥的破坏形态、极限承载能力以及剪力滞效应的变化规律。最后,根据理论计算结果和试验测试结果的分析对比得出相关结论。弯钢箱梁模型桥最不利截面为5000mm跨跨中截面。模型桥破坏时5000mm跨跨中截面底板焊缝处、外侧腹板焊缝处及内侧腹板处均出现宽度为2~5mm的裂缝。模型桥在集中荷载工况下的最小承载力为63kN,均布荷载工况下的最小承载力为45kN/m2;而模型桥在对应于实桥设计荷载的试验荷载作用下的最大应力为29.61MPa。由相似关系可知,在弹性范围内结构的承载力远大于其设计荷载。考虑材料非线性和几何非线性等因素,集中荷载作用下结构的实际极限承载力为156.7kN,均布荷载作用下结构的实际极限承载力为111 kN/m2。而实桥设计荷载对应的模型桥试验荷载为11.41kN,即模型桥的安全系数达到13.7。模型桥结构在稳定分析中以局部失稳为主,一般出现在腹板与横隔板处;稳定系数较大,在整个过程中不会出现失稳现象。无悬臂板钢箱梁由于自身的构造特点,钢箱梁桥截面纵向正应力沿横截面的变化幅度相对较小,变化规律比较复杂;针对受压区理论值与试验值之间的误差,建议采用β·λ作为受压区的应力提高系数。模型桥在线弹性、弹塑性、完全塑性状态下,跨中截面顶板在全塑性阶段剪力滞效应最明显,底板在全过程中剪力滞效应不明显;支点截面顶板在弹性阶段剪力滞效应最明显,底板在全塑性阶段较显著。无论是集中荷载或均布荷载作用下,对于同一个截面,正、负剪力滞效应可同时出现,对于每一个节点(顶底板与腹板相接处的测点),沿桥纵向正、负剪力滞效应均可能出现。在集中荷载或均布荷载作用下,单、双室模型与三、四室模型相比剪力滞效应相差不大,三、四室模型剪力滞效应较小;三室模型受支座反力影响较大,对支座处结构应加强设计。对于单箱四室截面模型,两种定义的曲梁剪力滞系数λ1、λ2区别不大,但λ1和λ2并不随着箱室数的增加而趋于一致。
     本文可为大曲率连续弯钢箱梁桥在设计计算中提供参考,并为钢桥规范的修订提供技术资料。
The curved steel box girder has many advantages such as succinct and beautiful appearance, light structure weight, best stress performance, good torsion rigidity performance, manufacture process simply and construct in a short time, well meet the demand of the terrain limitation, also, the general cost is not very high and etc.. Therefore, it is widely used in city viaducts and crossroads. Especially in cross lines, cross ground crack such special occasions with brilliant development prospect. Then, there are important realistic meanings in the study on this kind of bridge.
     In this paper, it has fully research on the ultimate load carrying capacity and the shear-lag effect of the continuous steel box girder with large curvature. First, there is a discussion about the concept of the structure load carrying capacity, type, stability, analysis principle, calculating method and the method to solve the ultimate load carrying capacity, the basic concept of shear-lag effect, etc.. Second, by using the finite element to analyzing the structure ultimate carrying capacity through the whole process. Including analysis of load carrying capacity under the allowable stress control, steady bucking eigenvalue, nonlinear stated ultimate load carrying capacity. Divide the stiffener area to the box girder cover plate equally, and then simplify the steel box girder to the ordinary box girder. Adopt calculus of variations to solve the problem and compare with space finite element. Thus, put forward the approximate calculation of shear-lag coefficient for the non-cantilever plate steel box girder. Next, according to space size, material characteristic, connection way of the original bridge, make the 1/10 of the proportions model bridge. By analyzing the result of experiment and theory calculation to research the rules of the mode of failure, the ultimate load carrying capacity, and the spear-lag effect. At last, according to the experiment and theory results to draw some related conclusions. The most unfavorable section of the carved steel box girder is 5000mm span middle section. There are 2-5mm cracks in width appeared in bottom board weld of the middle section, the outside web weld and the inside web weld in that section when the model bridge is destroyed. Under the concentrated load condition, the minimum load carrying capacity of Model Bridge is 63kN; under the uniform distributed load condition, the minimum load carrying capacity is 45kN/m2; although, the maximum stress of the model bridge which correspond in actual bridge design load test is 29.61MPa. It can be known from elastic range that structure load carrying is over than design load. Considering the factors such as material nonlinear and geometry nonlinear that under the concentrated load condition, the actual ultimate load carrying capacity of structure is 156.7kN, under the uniform distributed load condition, the actual ultimate load carrying capacity is 111kN/m2.The design load of actual bridge correspond in model bridge test load is 11.41kN. In the other word, the safety coefficient of the model bridge is up to 13.7. The structure of the model bridge may lose stability partly in stability analysis. Usually in web and cross board. With highly safety factor, it will not appear lose stability phenomenon. Because of the structure feature of non-cantilever plate steel box girder, the changing range of steel box girder section's vertical normal stress along with cross section is not very obvious. And the changing rule is more complicated; Due to the compressive region error between theory value and test value, the suggestion is adoptβ-λ, as the compressive region to enhance the stress coefficient. Also this text includes the study of shear-lag effect of the model bridge in elasticity, elasticity and plasticity, complete plasticity.Under the complete plasticity state, the span middle section has the best performance of shear-lag effect, and therefore, the bottom board has not obvious performance through the whole process; On the other hand, the pivot top section board has best performance of shear-lag effect under the elasticity state, the bottom board does a good job on the complete plasticity state either. No matter under the action of concentrated load or uniform distributed load, as the same section, plus or minus shear-lag effect can appear at the same time. Every joint along the bridge vertical direction, plus or minus shear-lag effect may appear at the same time. Under the action of concentrated load or uniform distributed load, there are not much differences between single、double compartments models and three、four compartments model of shear-lag effect actually. The shear-lag effect of three、four compartments model is much low; As the opposite stress of the third compartments model is much strong, thus, we need to enhance structure design at the rack. For the single box forth compartments section model, the two definitions of the curved girder shear-lag effect coefficient-λ1,λ2 are nearly same, but bothλ1,λ2 will not become the same with the number of compartments had been added.
     This text can offer references in calculating of design for the continuous steel box girder with large curvature and offer the technical data for criterion revision of steel bridge.
引文
[1]公路桥涵钢结构及木结构设计规范.人民交通出版社,1989年5月
    [2]贺拴海.桥梁结构理论与计算方法.人民交通出版社,2003年8月
    [3]郭耀杰.钢结构稳定设计.武汉大学出版社,2003年4月武汉
    [4]陈骥.钢结构稳定理论与设计.科学出版社,2001年2月北京
    [5]邢静忠,王永岗,陈晓霞ANSYS7.0分析实例与工程应用.机械工业出版社,2004年
    [6]杨勇,贺国京.曲线薄壁箱梁的空间受力分析.长沙铁道学院学报,2000.6,Vol.18,No.2
    [7]项海帆.高等桥梁结构理论.人民交通出版社,2000年7月
    [8]周远隶,徐君兰.钢桥.人民交通出版社,1991年6月
    [9]小西一郎.钢桥.人民铁道出版社,1980年9月
    [10]邵容光等.混凝土弯梁桥.人民交通出版社,1994年5月
    [11]AASHT0.美国公路桥梁设计规范.人民交通出版社,1998年
    [12]王序森,唐寰澄.桥梁工程.中国铁道出版社,1995年12月
    [13]范立础.桥梁工程.人民交通出版社,1996年8月北京
    [14]孙训方,方孝淑,关来泰.材料力学.高等教育出版社,1994年10月
    [15]李华,黄羚,王道斌.考虑局部变形影响的薄壁箱梁几何非线性分析. 石家庄铁道学院学报,1999.9,Vol.12,No.3
    [16]刘波.大曲率连续钢箱梁桥剪力滞效应试验研究.硕士学位论文,2004年6月
    [17]许强.薄壁曲梁线弹性理论和弹塑性稳定极限承载力分析.博士学位论文,2002年6月
    [18]朱俞江.箱形截面梁和梁柱的弹塑性稳定极限承载力分析.硕士学位论文,2003年1月
    [19]杨勇,贺国京.曲线薄壁箱梁的空间受力分析.长沙铁道学院学报,2000,18(2):17
    [20]叶勇等.正交异性钢桥面板模型的仿真分析.湖北工学院学报,2003,18(3):12
    [21]长安大学课题组.交通科技技术研究报告—后围寨立交工程B匝道弯钢箱梁实桥研究报告
    [22]长安大学课题组.交通科技技术研究报告—后围寨立交工程B匝道弯钢箱梁模型桥研究报告
    [23]中华钢结构论坛http://www.okok.org
    [24]仿真论坛http://www.simwe.com
    [25]Alcinia Z Sampaio,Alfonso Recuero. A geometric modelling of boxgirder deck for integrated bridge design. International Journal of Computer Applications in Technology.Geneva:2004.Vol.20, Iss.1-3; pg.54
    [26]Lon Yost, Scott Funderburk. Welding high-performance steel bridges Advanced Materials & Processes. Metals Park:Nov 2002.Vol.160, Iss.11; pg.19,3 pgs
    [27]罗旗帜,吴幼明.薄壁箱梁剪力滞理论的评述和展望.佛山科学技术学院学报(自然科学版),2001.9,Vol.19,No.3
    [28]CHANG S T, YUN D. Shear lag effect in box girder with varying depth[J]. J Struct Engrg, ASCE,1988,114(10):2280-2292.
    [29]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法.湖南大学学报,1991,18(2):33-39
    [30]杨允表,宋启根.曲线箱梁剪滞效应及有效宽度的理论分析.东南大学学报,1994.5,Vol.24,No.3
    [31]杨允表.曲线箱梁考虑曲率及剪力滞影响的力学分析.同济大学学报,1999.2,Vol.32,No.1
    [32]罗旗帜.薄壁曲箱梁桥剪滞效应分析.铁道学报,1999.10,Vol.21,No.5
    [33]彭大文,颜海.曲线脊骨箱梁的剪力滞效应分析.铁道学报,2001.8,Vol.23,No.4
    [34]彭大文,颜海.曲线箱梁剪力滞系数实用计算法.福州大学学报(自然科学版),2001.12,Vol.29,No.6
    [35]E. Reissner:Analysis of Shear Lag in Box beams by the Principle of Minimum Potential Energy, Quarterly of Appl. Math. Oct.1946
    [36]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报,1983.3,Vol.16,No.1
    [37]K. R. Moffatt and P. J. Dowling:Shear Lag in Steel Box Girder Bridges, Struct. Engr. Vol.53, Oct.1975
    [38]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应.人民交通出版社,1997年4月
    [39]Evans, H. R.& Taherian, A. R. "A Design Aid for Shear Lag Calculation", Proc. I. C. E, part2,1980,69, June
    [40]王济川.建筑结构试验.中国建筑工业出版社,1991年7月
    [41]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设,2000.4
    [42]易日.使用Ansys 6.1进行结构力学分析.北京大学出版社,2002年11月
    [43]程海根,强士中.钢-混凝土组合简支箱梁剪力滞效应分析.西南交通大学学报,2002.8,Vol.37,No.4
    [44]赵煜,刘波.大曲率连续钢箱梁桥剪力滞试验与分析.西安科技大学学报,2006.9, Vol.26,No.3
    [45]魏锋,许冰.大曲率小半径连续弯钢箱梁桥受力性能分析.山西建筑,2008.10,Vol.34,No.28
    [46]周勇军,赵小星,贺拴海,宋一凡.弯钢箱梁桥的动力分析及模态试验.郑州大学学报,2005.12,Vol.26,No.4
    [47]冯威,赵煜.小半径大曲率连续弯钢箱梁桥受力性能研究.公路交通科技,2007.2,Vol.24,No.2
    [48]亓兴军,李小军,李美玲.设置粘滞阻尼器的大跨斜拉桥抗震分析.铁道建筑,2007.1,1-3
    [49]包立新,李小珍,卫星,庄卫林.宜宾长江公路大桥斜拉桥抗震性能评价.工程力学,2008.2,174-182
    [50]沙培洲.独塔双索面斜拉桥抗震及抗风稳定性分析.科技交流,2006.3,52-57
    [51]肖光宏,张秋陵,黄明海.几何非线性对大跨斜拉桥稳定性的影响.重庆交通学院学报,2007.6,17-19
    [52]贺丽丽,肖盛燮,臧登科.基于AHP和模糊理论的斜拉桥稳定性评价.重庆交通大学学报,2007.6,33-37
    [53]蒋伟,李洞明,李杨.塔梁间纵向弹性约束对斜拉桥抗震性能的影响.现代交通技术,2007.10,50-52
    [54]胡峰强,陈艾荣,林铁良.杭州湾南航道独塔斜拉桥抗风性能试验研究.工程力学,2006.8,132-138
    [55]谢旭,阙仁波,张鹤,沈赤.有效弹性模量法在大跨斜拉桥稳定计算中应用.浙江大学学报,2006.10,1761-1767
    [56]陈际丰,刘强,牛恩宗.波浪作用下船舶撞击力计算参数的选择.水运工程,2007.11,6-9
    [57]李国豪等.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992
    [58]中铁大桥勘测设计院.新建武汉天兴洲公铁两用长江大桥设计补充规定.[z].武汉,2003
    [59]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,2002
    [60]何君毅等.工程结构非线性问题的数值解法[M].北京:国防工业出版社,1994
    [61]R.W.克拉夫,J.彭津.结构动力学[M].王光远等译.北京:科学出版社,1981
    [62]张晓壳等.斜拉桥的数学建模[J].国外桥梁,1998
    [63]Priestley M J N. Seismic design an d retrofit of bridges[M].1997
    [64]Tanaka H. Similitude and modeling in bridge aerodynamics:Aerodynamics of large bridges[M]. Rotterdam:Ballkema,1992
    [65]Scalan R H. Omkojj. Airfoil and bridge deck flutter[J]. J End Mech,1971,97(6): 1717-1737
    [66]Scanlan R H. The action of flexible bridges under wind, I :flutter theory [J]. J Sound and Vib,1978,60(2):187-199
    [67]Theodorson T. General theory of aerodynamic instability and mechanism of flutter[R]. NACA Report No.496,1935
    [68]Simiu E. Scanlan R. Wind effects on structures[M]. New York:Wiley,1978
    [69]Gupta H. Sakar P P. Mehta K C. Identification of vortex-induced-response parameter in time domain[J].J. Engrg Mech,1996,122(11):1031-1037
    [70]Scanlan R H. The action of flexible bridges under wind, II:buffeting theory [J].J. sound and Vib.1978,60(2):201-211
    [71]熊正元,颜全胜,李立军.大跨度斜拉桥的静风非线性稳定分析[J].铁道标准设计,2004(9)
    [72]谢幼藩,赵雷等.万县长江大桥420m钢筋混凝土箱型拱的施工稳定性分析[J].桥梁建设,1995(1):77-81
    [73]赵雷,卜一之.丫髻沙大桥施工阶段稳定性分析的路径效应[A].第13届全国桥梁学术会议论文集[C].上海:同济大学出版社,1998:698-702
    [74]苗家武、肖汝诚,裴岷山等.苏通大桥斜拉桥静力稳定分析的综合比较研究[J].同济大学学报(自然科学版),2006,34(7):869-873
    [75]程进,肖汝诚,项海帆.大跨经斜拉桥静风稳定性的参数研究[J].土木工程学报,2001,34(2):55-61
    [76]Nagai M. Xie X, yamagnchi H, et al. Static and dynamic instability analysis of 1400-meter long-span cable-stayed bridges[C]//IABSE Peports. IABSE Symposium Kobe 1998. Kobe, Japan,1998:281-286
    [77]许树伯.层次分析法[M].天津:天津大学出版社,1987
    [78]Walther R. Cable—stayed bridges[M]. London:Thomas TelfOrd Publishing.1985
    [79]Pedoluy W Jr. Construction and design of cable—stayed bridges [M]. New York: wiley,1976
    [80]Wahher R. Cable—stayed Bridge[M]. London:Thomas Te rd Ltd.1988
    [81]Adell H. Full nonlinear analysis of composite girder cable-stayed bridge[J]. comput. Struct,1995,554:267-277
    [82]Man-Chung Tang Buckling of Cable-Stayed Girder Brides. lournal of the Strucaura]
    Division Proceediags of the Americad Society of Civil Engineers, 102 (ST9)
    [83] Hiroshi Nakal etc . Etasto-plastic and Fimite Displacemat Analysis of Cable-stayed Bridges. Mem Fac Eng. Osaka City Univ, 26. 251—271
    [84] XIE X, NAGAI M, YAMAGUCHI H~Elasto-plastic finite displacement analysis of long-span cable-stayed bridges including inelastic behavior of ables[J]. Journal of Structural Enginering JSCE, 1998, 44A: 229—236
    [85] NAGAI M, ASANO K, WATANABE K. Applicability of the Er method and design method for evaluating the load-carrying capacity of girders in cable-stayed bridges [J]. Journal of Structural Engineering JSCE, 1995, 41A : 221-228
    [86] NAGAI M, XIE X. YAMAGUCHI H. Effect of inelastic behavior of cables on ultimate behavior and strength of cable-stayed bridges and the possibility of reduction of the safety factor[J]. Journal of Structural Enginering JSCE, 2000, 661 (1-53): 85~94
    [87] Japan Road Association. Steel bridges[M]. Tokyo: Maruzen, 2002
    [88]美国各州公路和运输工作者协会AASHTO.美国公路桥梁设计规范[S].1994
    [89]何旭辉,陈政清,黄方林.南京长江大桥安全监测与状态评估的初步研究[J].振动与冲击,2002,21(1):75-78
    [90]刘世忠,欧阳永金,吴亚平等.变截面薄壁箱梁剪力滞剪切变形效应分析[J].中国公路学报,2002,15(3):61-63
    [91]颜娟,黄才良,张哲.双主梁式斜拉桥主梁有效宽度[J],长安大学学报(自然科学版), 2003,23(1):46-48
    [92]吴文清,叶见曙,万水等.波形钢腹板组合箱梁在对称加载作用下剪力滞效应的试验 研究[J].中国公路学报,2003
    [93]段海娟,赵人达.薄壁曲线箱梁空间分析的梁段单元[J].土木工程学报,2004,37(12): 1-5
    [94]吴幼明,罗旗帜,岳珠峰.变高度连续箱梁剪力滞效应试验研究[J].实验力学,2004, 19(1):85-90
    [95]孙振忠,杨玉英.薄板剪应力起皱研究[J].工程力学,2006,23(7):35-39
    [96]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J].工程力学,2005,22(2):96-103
    [97]唐怀平,唐达培.大跨径连续刚构箱梁剪力滞效应分析[J].西南交通大学学报,2001, 36(6):58-62
    [98]王沧海,曹洪武.一座双薄壁墩连续刚构桥梁的设计[J].山西建筑,2007,33(21):
    330-331
    [99]姚玲森.曲线梁[M].北京:人民交通出版社,1989
    [100]韩皓,曹劲松.曲线箱梁桥实用设计方法的研究[J].内蒙古工业大学学报,1997, 16(2):23-27
    [101]刘钢城.梁格法在某单箱双室连续箱梁纵向应力分析中的应用[J].铁道勘测与设计, 2002,(5):18-20
    [102]徐建国,陈淮,王博等.连续箱梁桥力学性能分析[J].郑州大学学报江学版),2004, 25(1):28-30
    [103] EVANSHR, AtlMADMK, KPJSIY~ V. Shearlagin eompoeile box[d∞ of co cross 84-llorl[J]. J Constmctlonal Steel Research, 1993. 24 (3): 193-98.
    [104] HCHAN , YKCHEUNG , YPHUANG . NonlinearModdling Of Rein -forced CencrfStructures [J]. Computess& Structures, 1994, 53(5): 1 099 -1 107
    [105] CHAN H Y, MELCHEBS R E. Tune-desistenee Deterioration in Pr-iliatieSturetural JEm [J]. Civil Blgil , 1995, 12: 118?32
    [106] ENBIGI'tI"M P . FRANGOPOLDM . Servicdife Predictionti"DetetioratiIlgeclkesQ] . J-mal ti"Smmml fl lgilleelillg-ASCE, 1998. 124 (3): 309-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700