用户名: 密码: 验证码:
AP1000海水循环泵研制及其内流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,随着清洁能源技术在全世界的发展和推广,我国核电产业进入高速发展时期,尤其是AP1000三代核电站在国内的兴建,使得作为泵行业高端产品的核电泵市场开始显著增长。其中大型海水循环泵作为AP1000三代核电系统的重要设备,其也是现阶段核电泵国产化的重要项目之一。本文采用理论分析、模型试验和数值分析相结合的方法对AP1000海水循环泵机组的水力模型、结构设计和内流场特性等方面进行了系统的研究,以此加快和提高AP1000海水循环泵机组的国产化进度和水平。此外,通过本文在模型泵内流场演化、回流特性和叶轮动态径向力方面的研究,为揭示斜流泵内流场相关特性提供了重要的参考。本文的主要研究工作和创造性成果如下:
     1.在参考以往优秀水力模型和相关设计原则的基础上,设计获得了AP1000海水循环泵的水力模型,并采用高精度闭式试验台对其进行了性能测试,结果显示该水力模型能够满足AP1000海水循环泵机组的设计性能要求,从而为进一步的研发打下了基础。
     2.分别采用标准k-ε、RNG k-e与SST k-co湍流模型对模型泵进行了数值计算研究,基于水力性能和内流场分布特征两个方面对不同湍流模型的分析结果进行了研究,并针对不同湍流模型在非设计工况下的适用性进行了重点研究,通过在0.2Q0到1.2Q0工况内的湍流模型适用性分析,其结果显示RNG k-ε与SST k-ω模型比标准k-ε模型更适用于模型泵在非设计工况下的数值分析研究。
     3.采用理论分析方法对具有球形外缘的斜流泵叶轮内流场二次流发生和演化机理进行了研究,基于理论推导结果对由二次流引发的叶轮内流场回流现象发生规律进行了总结。对具有普遍意义的斜流泵稳定性能曲线特征进行了分析,采用理论分析方法就叶轮进、出口回流对其理论扬程的影响进行了研究,并首次提出一种适用于工程应用的临界流量概念。通过数值计算对模型泵内流场回流及演化特性进行了研究,并针对叶轮进、出口和导叶出口处的环量分布随采样线位置及工况变化特征进行了详细分析,首次发现小流量工况下叶轮出口回流中存在的逆流现象,为进一步深入研究斜流泵叶轮出口的回流涡旋分布提供了参考。
     4.采用非定常数值计算方法对模型泵叶轮动态径向力和出口流道压力脉动进行了研究,首次对不同工况下的叶轮动态径向力在时域和频域内的变化特性进行了较为系统的分析,发现了叶轮动态径向力在特定频率下的峰值随工况变化的规律。通过进一步针对叶轮与导叶之间过渡流道内压力脉动变化特性的研究,证实了叶轮出口回流对于叶轮动态径向力、压力脉动和动静干涉现象的影响。此外,还针对模型泵机组的振动特性进行了试验研究,分析得到机组振动强度随流量变化规律以及主要振动分量的组成。
     5.设计得到采用楔形导水结构的海水循环泵进水池方案,并基于目标函数优化的方法对进水池方案进行了比较分析,得到较为合理的进水池设计尺寸值。采用非定常数值分析方法对进水池与模型泵联合计算域进行了计算,并就进水池流场对模型泵叶轮动态径向力的影响进行了研究,结果显示,受到进水池流场影响的叶轮动态径向力在零频和叶频附近出现了较为明显的峰值,其数值随着流量的降低而增大。
     6.在完成海水循环泵机组结构设计的基础上,基于理论分析和有限元分析法对循环泵转子部件支承结构动刚度、转子临界转速和整机可运行性进行了研究。结果显示,在低于一阶共振模态频率点时,转子支承动刚度值随着激励频率的增加而逐渐减小,并与泵体壁厚变化呈正比例线性关系。支承结构动刚度对于转子临界转速具有显著的影响,在考虑支承结构动刚度时,本文设计结构的转子一阶横向振动频率约为17.5Hz,能够满足设计要求。按照设计地震响应谱输入条件,根据泵机组整机模型响应谱分析结果显示,本文设计的海水循环泵结构能够满足设计地震载荷下的可运行性要求。
The nuclear power industry in China entered a rapid expansion period for the development of clean energy all over the world in the past years, the construction of the first AP1000nuclear power plant which belong to the advanced third generation nuclear power technology in China boost the market of pump industry driven by nuclear power plant. The localization of nuclear power pump industry became a important target for domestic pump manufacturers, the large-scale seawater circulation pump is one of major localization projects for its significance in AP1000system. In order to improve the development level and accelerate localization process, the hydrodynamic model, structure design and flow-field characteristic of seawater circulation pump were specificly researched through theory analysis, model test and numerical simulation methods in this dissertation, in addition, so many important references data were presented through the researches on the flow-field evolution, recirculation and impeller hydrodanamic raidial force of the model pump. The main research works and innovative achievements are as follows:
     1. Based on the excellent hydraulic model obtained before and successful design principles, the hydraulic model of AP1000seawater circulation pump was designed with streamline method, the performance test in high accuracy closed loop presents that the hydraulic model can meet the design requirements of AP1000seawater circulation pump unit.
     2. The model pump flow field was calculated with standard k-ε, RNG k-ε. and SST k-ω turbulence model respectively, the results of different trubulence models were analyzed in performance characterstics and flow field distribution, and the applicabilities of trubulence models in partial load were analyzed especially, it concluded that the RNG k-ε and SST k-ω turbulence model are more applicable than standard k-ε turbulence model in partial load condition numerical simulation research.
     3. The secondary flow and evolution of flow field of mixed-flow pump impeller with spherical figure were researched with theory analysis method, the laws of recirculation in impeller induced by secondary flow were summed up based on theory analysis before. The general steady performance curve characteristic of mixed flow pump was analyzed, the influence from recirculation of impeller to theoretical head was researched by theory analysis, and brought out a new consept of critical flow rate which was more applicable to engineering application. The recirculation and evolution of flow field of model pump were researched with numerical simulation method, the circulation around the impeller inlet, outlet and the diffuser outlet were specifically analyzed in different flow rates, a reverse flow phenomena was found for the first time in the recirlution of impeller outlet, these results provided valuable conference data for further investigation of mixed flow pump.
     4. The hydrodynamic radial force and pressure pulsation around impeller outlet of model pump were calculated with unsteady numerical simulation method, and a vibration test analysis of model pump assemble was finished. The hydrodynamic radial forces of impeller in different flow rates were analyzed in time and frequency domains specifically for the first time, the characteristics of hydrodynamic radial forces at certain frequency were founded, through a further research on pressure pulsation between impeller and diffuser, it proved the influence of recirculation in impeller outlet to hydrodynamic radial force, pressure pulsation and rotor-stator interaction.
     5. The inlet sump project with wedge shape distributor was designed based on former method, the reasonable dimensions of inlet sump obtained through a analysis based on objective function optimization method. The unsteady numerical simulation of inlet sump and model pump was carried out, and the hydrodynamic radial force characteristic under inlet sump was researched, the result presents that there were peak values around zero and vane-pass frequency which are caused by inlet sump apparently, and the force values increased with decreasing flow rate.
     6. Based on the structure design of seawater circulation pump unit, the support structure dynamic stiffness, rotor critical speed and operability of pump unit were researched with theory and finite element analysis method. The results present that the dynamic stiffness of support structure decreased with increasing external excitation frequency when lower then1st resonance frequency, the value of stiffness is in direct proportion to the thickness of pump case. The1st lateral resonance frequency of rotor component considering dynamic stiffness is about17.5Hz, and it's safe for pump operation. The structure of pump assemble satisfied the operability requirement under the design seismic response spectrum input.
引文
[1]欧阳予,汪达升.国际核能应用及其前景展望与我国核电的发展[J].华北电力大学学报,2007,34(5):1-10.
    [2]Alan M世界核能发电现状及其未来前途[R].世界核电形势,国际原子能机构:2008.
    [3]欧阳予.世界核电技术发展趋势及第3代核电技术的定位[J].发电设备,2007,5:325-331.
    [4]欧阳予.国外核电技术发展趋势(上)[J].中国核工业,2006,1:23-26.
    [5]欧阳予.国外核电技术发展趋势(下)[J].中国核工业,2006,3:16-20.
    [6]International Atomic Energy Agency. International status and prospects for nuclear power 2012[R]. Vienna:IAEA,2012.
    [7]U.S Energy Information Administration. International energy outlook 2011 [R]. Washington:EIA, 2011.
    [8]BP Group. BP energy outlook 2030[R]. London:BP,2012.
    [9]International Energy Agency, world energy outlook 2011[R]. Paris:IEA,2011.
    [10]International Atomic Energy Agency. Nuclear technology review 2012[R].Vienna:IAEA,2012.
    [11]景继强.世界核电发展历程与中国核电发展之路[J].东北电力技术,2008,16(2):48-51.
    [12]李干杰.对我国发展核电若干关键问题的分析与看法[J].华北电力大学学报(社会科学版),2006,3:1-7.
    [13]国家发展和改革委员会.核电中长期发展规划(2005-2020年)[R],北京:发改委,2007.
    [14]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [15]邹长城.中国核电产业自主化研究[D].长沙:中南大学商学院,2011.
    [16]孙昌基,许连义.AP1000主要核岛设备国产化[J].发电设备,2007,4:249-251.
    [17]隋永滨.核电泵阀国产化工作取得重要进展[J].通用机械,2009,5:12-17.
    [18]束国刚,上官斌.核电设备国产化推进工作实践[J].电力技术经济,2009,21(3):7-12.
    [19]徐连义.核电国产化研究[J].发电设备,2003,6:1-4.
    [20]范刚.核电设备国产化趋势[J].中国核工业,2006,67(3):10-13
    [21]邹树梁.中国核电产业发展战略研究[D].长沙:中南大学商学院,2006.
    [22]林诚格.非能动安全核电厂AP1000[M].北京:原子能出版社,2008.
    [23]许连义.AP 1000核岛主要设备的国产化[J].中国核 工业,2007,6:14-16.
    [24]减明昌.第三代核电和西屋公司AP1000评述[J].核科学与工程,2005,25(2):106-115.
    [25]Westinghouse Group. AP1000 design control document[M].Washington:NRC,2004.
    [26]王永峰,杜广波,李浩.AP1000核电关键设备的制造特点及国产化[J].能源技术,2010,31(1):28-33.
    [27]广东核电培训中心.900MW压水堆核电站系统与设备[M].北京:原子能出版社,2004.
    [28]中国广东核电集团有限公司.中国改进型压水堆核电CPR1000简介[J].现代电力,2006, 23(5):36-38.
    [29]中国核工业集团公司.CNP1000核电厂工程技术方案[J].现代电力,2006,23(5):39-48.
    [30]沈健生,钱锦辉.大亚湾核电站工程概况[J].中国电力,1999,4:1-5.
    [31]徐智渊.AP1000核电循环水泵选型及配置分析[J].机电工程技术,2012,41(2):75-79.
    [32]何希杰,李艳辉,高瑛,等.混流泵的现状与发展趋势[J].通用机械,2003,9:21-24.
    [33]关醒凡.轴流泵和斜流泵(水力模型设计试验及工程应用)[M].北京:中国宇航出版社,2009.
    [34]沈阳水泵研究所主编.叶片泵设计手册[M].北京:中国机械工业出版社,1983.
    [36]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [37]潘中永,倪永燕,袁寿其,等.斜流泵研究进展[J].流体机械,2009,37(9):37-41.
    [38]斯捷潘诺夫.离心泵和轴流泵理论、设计和应用[M].北京:中国机械工业出版社,1980.
    [39]格梁科,帕皮拉.叶片泵[M].吴仁荣等译,北京:国防工业出版社,1982.
    [40]吴建廉.混流泵叶轮二元设计方法的研究[J].华中工学院学报,1983,11(4):61-68.
    [41]郎继兴.混流泵的变轴面速度设计理论[J].华北电力学院学报,1987,3:91-101.
    [42]何希杰.混流泵叶片理论和设计方法[J].通用机械,2003,5:31-34.
    [43]曹树良,梁莉,祝宝山,等.高比转速混流泵叶轮设计方法[J].江苏大学学报(自然科学版),2005,26(3):185-188.
    [44]张勤昭,曹树良,陆力.高比转数混流泵导叶设计计算[J].农业机械学报,2008,39(2):73-76.
    [45]蔡佑林,王立群.混流泵叶轮三元可控速度矩的设计[J].流体机械,2005,33(11):13-17.
    [46]蔡佑林,王立群.喷水推进混流泵叶轮三元可控速度矩设计[J].船舶,2006,(1):24-26.
    [47]邴浩,曹树良,谭磊.混流泵叶轮设计正反问题迭代方法[J].排灌机械工程学报,2011,29(4):276-271.
    [48]林恺,曹树良,祝宝山,等.用于高比转速混流泵设计的流场计算[J].清华大学学报(自然科学版),2008,48(2):219-223.
    [49]关醒凡,杨敬江.高比速斜流泵水力模型实验研究[J].水泵技术,2002(4):3-8.
    [50]钱晓.混流泵效率特性的预测与实测特性的比较[J].水力发电学报,1999,2:84-91.
    [51]Oh H W, Kim K Y. Conceptual design optimization of mixed-flow pump impellers using mean streamline analysis. Proc Inst Mech Eng, Part A, J Power Energy,2000,215:133-138.
    [52]Goto A, Zangeneh. Hydrodynamic design of pump diffuser using inverse design method and CFD[J]. Journal of Fluids Engineering, Transactions of the ASME,2002,319-328.
    [53]Kosuke Ashihara,Akira Goto. Turbo machinery blade design using 3-D inverse method CFD and optimization algorithm. Proceedings of ASME Turbo Expo,2001-GT-0358,1-9.
    [54]KIM Jin Hyuk, AHN Hyung-Jin. High-efficiency design of a mixed-flow pump[J]. Science China Technological Sciences,2010,53(1):24-27.
    [55]Yumiko Takayama,Hiroyoshi Watanabe. Multi-objective design optimization of a mixed-flow pump[J]. Proceedings of AS ME Fluids Engineering Division Summer Conference 2009.
    [56]Katsutoshi Kobayashi. Numerical simulation of cavitating flow in mixed flow pump with closed type impeller. [J]. Proceedings of the AS ME Fluids Engineering Division Meeting,2009.
    [57]Yoshinobu Yamade, Chisachi Kato. Large eddy simulation of internal flow of a mixed-flow pump[J]. Proceedings of the ASME Fluids Engineering Division Meeting,2009.
    [58]吴志旺.基于环量分布的高比转速混流泵设计、数值模拟及试验研究[D].镇江:江苏大学,2009.
    [59]辛喆.混流式水轮机全部流通元件的三维湍流流场分析与性能预测[D].北京:中国农业大学,2005.
    [60]Wu C H. A general theory of three dimension flow in subsonic and supersonic turbomachines of axial, radial, and mixed flow type[J]. NACA, TN 2604,1952.
    [61]罗兴琦,梁武科,廖伟丽,等.水力机械转轮准三维反问题研究与发展[J].西安理工大学学报,1997,13(2):157-163.
    [62]忻孝康.叶轮机械三元流动与准正交面法[M].上海:复旦大学出版社,1988.29-183.
    [63]钱涵欣,陈乃祥,林汝长,等.混流泵叶轮的正反问题迭代设计[J].水利学报,1997,1:25-31.
    [64]袁卫星,张克危.离心泵射流一尾迹模型的三元流动计算[J].水泵技术,1990,(1):12-18.
    [65]Martelli F. Using Viscous Calculation in Pump Design[J] Journal of Fluid Engineering,1990, 112(9):272-280.
    [66]罗兴琦,廖伟丽.流体机械叶轮设计的研究与发展[J].力学进展,1997,27(3):273-292.
    [67]罗兴琦.混流式转轮内有旋流动的全三元反问题计算[J].力学学报,1995,27(1):30-36.
    [68]张人会.离心泵叶片的参数化设计及其优化研究[D].兰州:兰州理工大学,2010.
    [69]杨琳,陈乃祥,樊红刚.水泵水轮机转轮全三维逆向设计方法[J].清华大学学报(自然科学版),2005,45(8):1118-1122.
    [70]钱涵欣.用积分方程法设计轴流泵叶轮[J].清华大学学报,1996,36(8):60-65.
    [71]刘超.大型立式轴流泵装置的性能和稳定性分析[J].中国给水排水,2003,19(3):69-71.
    [72]潘中永.斜流泵不稳定特性及旋转失速研究[J].农业机械学报,2012,43(5):64-68.
    [73]Krause N. Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump[J]. Experiments in Fluids,2005,39(2):192-201.
    [74]丁成伟.离心泵与轴流泵原理及水力设计[M].北京:机械工业出版社,1981.
    [75]Pfleiderer C叶片泵与透平压缩机[M].奚启隶译,北京:机械工业出版社,1983.
    [76]Jones Robert M. Vertical reactor coolant pump instabilities[J]. NASA Conference Publication, 1985,277-286.
    [77]Kurokawa, Junichi. Performance curve instability of a diffuser pump at low flow-rates[J]. Transactions of the Japan Society of Mechanical Engineers,1988,54:3449-3456.
    [78]Jeffrey P B. Instabilities and unsteady flows in centrifugal pumps[D]. Boston:MIT,1990.
    [79]Goto A. Suppression of mixed-flow pump instability and surge by the active alteration of impeller secondary flows[J]. Journal of Turbomachinery,1994,116(4):621-628.
    [80]Miyabe M, Furukawa A. On improvement of characteristic instability and internal flow in mixed flow pumps[J].Journal of fluid science and technology,2008,3(6):732-741.
    [81]Miyabe M, Maeda H. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump[J]. Journal of Thermal Science,2006,15(2):115-121.
    [82]关醒凡,黄道见,刘厚林.南水北调工程大型轴流泵选型中值得注意的几个问题[J].水泵技术,2002,2:13-16.
    [83]王乐勤.超低比转速高速诱导轮离心泵的不稳定控制与试验研究[J].工程热物理学报,1998,19(3):315-320.
    [84]成立,吴璐璐,刘超.大型轴流泵水力不稳定区研究[J].灌溉排水学报,2010,29(2):102-105.
    [85]郑源.低扬程大流量泵装置马鞍区的流动特性[J].排灌机械工程学报,2011,29(5):369-373.
    [86]刘君.低扬程轴流泵装置模型马鞍形区研究[J].南水北调与水利科技,2011,9(4):34-38.
    [87]Toyokura T, Kubota, Akaike. Studies on Back-flow to the Suction Side of Mixed-flow Impeller Blades[J]. Bull of JSME,1969,12(50):215-221.
    [88]格梁科,帕皮拉.叶片泵[M].吴仁荣,朱家勋,译.北京:国防工业出版社,1982:169-186.
    [89]Gulich J F. Centrifugal pumps [M]. Berlin:Springer Science Business Media,2008.
    [90]Stewart C B. Investigation of centrifugal pumps[D]. Madison:University of Wisconsin,1909.
    [91]Fischer K. Investigation of the flow condition in a centrifugal pump[J]. Transaction of the ASME,1932,54:143-155.
    [92]Stepanoff A J. Centrifugal and Axial Flow Pumps:Theory, Design, and Application[M]. New York:John Viley&Sons Inc,1957.
    [93]Fraser W H. Recirculation in Centrifugal Pumps[C]. ASME Winter Annual Meeting, Washington DC,1981:65-86.
    [94]Gopalakrishnan S. A New Method for Computing Minimum Flow[J]. Proceedings of the 5th international pump users symposium. Texas A&M University,1988:41-47.
    [95]Heald C.Backflow control improves pump performance[J].Oil and Gas Journal.1985,83(8): 96-98.
    [96]Gulich J F,Egger R. Part-load flow and hydraulic stability of centrifugal pumps[J]. Electric Power Research Institute Report,1992.
    [97]Gulich J F. Influence of flow between impeller and casing on part-load performance of centrifugal pumps[J]. ASME FED,1989,81:227-235.
    [98]龚春林,贾宗谟.离心泵小流量工况下叶轮进口回流的理论计算及试验研究[J].水泵技术,1990,3:11-19.
    [99]李意民.水泵回流理论与研究.流体机械,1995,23(9):29-31.
    [100]刘甲凡.离心泵叶轮前的预旋与回流[J].水泵技术,1997,5:17-19.
    [101]黄建德.离心泵进口回流的发生机理及预估[J].上海交通大学学报,1998,32(7):5-9.
    [102]朱荣生,欧鸣雄.低比转数双吸离心泵回流问题的CFD研究[J].农业机械学报,2009,40 (4):82-85.
    [103]袁寿其,梁贇.离心泵进口回流流场特性的数值模拟及试验[J].排灌机械工程学报,2011,29(6):461-465.
    [104]刘超.水泵及水泵站[M].北京:中国水利水电出版社,2009.
    [105]关醒凡.现代泵技术手册[M].北京:中国宇航出版社,1995.
    [106]Rajendran V P. Experimental validation of numerical model of flow in pump-intake bays[J]. Journal of Hydraulic Engineering,1999,125(11):1119-1125.
    [107]Iwano R. Numerical prediction method of a submerged vortex and application to the flow in pump sumps with and without a baffle plate[J]. Proceeding of 9th International Symposia on Transport Phenomena and Dynamics of Rotating Machinery 2002:1-6.
    [108]Tomoyoshi O. CFD prediction and model experiment on suction vortices in pump sump[J]. AICFM9,2007,053.
    [109]Tanweer S. Simulation of flow through a pump sump and its validation [J]. IJRRAS 4,2010,1:7-17.
    [110]Chuang W L. Three-dimensional numerical simulation of intake model with cross flow[J].Journal of Hydrodynamic,2011,23(3):314-324.
    [111]何耘.双吸水管串联布置进水池水力特性研究[D].北京:中国水利水电科学研究院,2005.
    [112]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,2001,29(1):40-45.
    [113]陆林广.泵站进水流道三维流动及水力损失数值模拟[J].排灌机械,2008,26(5):55-58.
    [114]陶海坤.钟形进水流道吸水窒后壁的优化设计[J].江苏大学学报,2007,28(3):228-231.
    [115]成立,刘超.大型立式泵站双向进水流道三维紊流数值模拟[J].农业机械学报,2004,35(3):61-64.
    [116]仇宝云.大型立式轴流泵叶片进口流场及其对水泵影响研究[J].机械工程学报,2005,41(4):28-34.
    [117]朱红耕.大型泵站进水流道技术改造优选设计[J].水力发电学报,2006,25(2):51-55.
    [118]关醒凡,袁寿其.高比转数斜流泵模型的试验研究[J].中国农村水利水电,2003,5:59-62.
    [119]施卫东.ZM931高比转数轴流泵水力模型的设计[J].农业机械学报,1998,29(2):48-52.
    [120]白小榜.混流泵速度系数法水力设计探讨[J].水泵技术,2008,5:11-14.
    [121]邴浩,曹树良.速度矩分布规律的参数化描述及对混流泵性能的影响[J].农业工程学报,2012,28(13):100-105.
    [122]关醒凡.高比速斜流泵水力模型试验研究[J].水泵技术,2002,4:3-9.
    [123]普弗莱德芮尔著.叶片泵与透平压缩机[M].奚启隶泽,北京:机械工业出版社,1983.
    [124]王博珺.后置导叶对斜流泵性能的影响及分析[J].水泵技术,2009,6:28-31.
    [125]邮浩,曹树良.混流泵导叶对其性能的影响[J].排灌机械工程学报,2012,30(2):125-130.
    [126]中华人民共和国水利部.SL 140—2006水泵模型及装置模型验收试验规程[S].北京:中国水利水电出版社,2007.
    [127]国家标准局.GB/T 3216-2005回转动力泵水力性能验收试验1级和2级[S].北京:标准出版社,2005.
    [128]李卫华.海阳核电站一期循环水泵模型试验[J].通用机械,2011,10:78-81.
    [129]Olivier Braun. Part load flow in radial centrifugal pumps[D]. Swiss:Lausanne Federal Polytechnic University,2009.
    [130]张伟.叶片泵非设计工况叶轮内部流动分析和预测[D].上海:上海大学,2010.
    [131]付强.核电站离心式上充泵多工况水力设计[J].排灌机械工程学报,2010(4):82-85.
    [132]王凯.离心泵多工况水力设计和优化及其应用[D].镇江:江苏大学,2011.
    [133]Anderson J D. Computational fluid dynamics:The Basics with Applications[M]. 北京:清华 大学出版社,2002.
    [134]王福军.水泵CFD应用中的若干问题与思考[J].排灌机械,2005,23(5):1-10.
    [135]阎超.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5):561-589.
    [136]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [137]陶文铨编著.计算传热学的近代进展.北京:科学出版社,2001.
    [138]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [139]熊鳌魁.湍流模式理论综述[J].武汉理工大学学报,2001,25(4):451-455.
    [140]韩占忠FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [141]Fluent Theory Guide in Ansys 13.0 Help. Ansys Inc,2011.
    [142]赵斌娟.双流道泵内非定常三维湍流数值模拟及PIV测试[D].镇江:江苏大学,2007.
    [143]Rikke K B, Nicholas P. Flow in a centrifugal pump impeller at design and off-design conditions—part Ⅱ:large eddy simulations [J]. ASME Journal of Fluids Engineering,2003, 125(8):73-83.
    [144]施法佳,陈红勋.轴流泵内部流动数值模拟中湍流模式可用性的研究[J].上海大学学报,2006,12(3):274-278.
    [145]FENG J J. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements [J]. Journal of turbomachinery,2011,133(1):011004.
    [146]FELIX A M, PETER H, PHILIPPE D. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow [J]. ASME Journal of Fluids Engineering,2002, 124(11):798-802.
    [147]王国玉,霍毅,张博,等.湍流模型在轴流泵性能预测中的应用于评价[J].北京理工大学学报,2009,29(4):309-314.
    [148]王振东.流体涡旋漫谈[J].现代物理知识,2012,24(2):9-17.
    [149]Lugt H J. Vortex Flow in Nature and Technology [M]. New York:John Wiley & Sons,1983.
    [150]Gulich J F. Rotor dynamic and thermal deformation tests of high-speed boiler feed pumps [R]. Electric Power Research Inst, EPRI Report GS-7405,1991.
    [151]Rishel J B. Applying affinity laws for centrifugal pumps [J]. HPAC Engineering,2001,73(2): 35-38.
    [152]张惠民.叶轮机械中的三元流理论及其应用[M].北京:国防工业出版社,1984.
    [153]耿少娟,聂超群.不同叶轮形式下离心泵整机非定常流场的数值研究[J].机械工程学报,2006,42(5):27-31.
    [154]Kevin A K.Unsteady flow fields in a high specific speed centrifugal pump [D]. Swiss:ETH Zurich,1997.
    [155]Olivier B.Unsteady numerical simulations of the flow related to unstable energy-discharge characteristic of a medium specific speed double suction pump [J]. Proceedings of FEDSM, 2007 San Diego, California USA,37550.
    [156]Kevin A K A first analysis of flow field hysteresis in a pump impeller [J]. Journal of Fluids Engineering,1997,118(4):685-691.
    [157]关醒凡.新系列轴流泵模型试验研究成果报告[R].排灌机械,2005,23(4):1-5.
    [158]张克危.流体机械原理[M].北京:机械工业出版社,2000.
    [159]Goto A. Hydrodynamic design of pump diffuser using inverse design method and CFD[J]. Journal of Fluids Engineering,2002,124(2):319-328.
    [160]倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D].镇江:江苏大学,2008.
    [162]Thomas A L. Reduction of unsteady rotor-stator interaction using trailing edge blowing [D]. Blacksburg:Virginia Polytechnic Institute,1997.
    [163]Yoshida Y. Rotordynamic forces on an open-type centrifugal compressor impeller in whirling motion [J]. ASME Journal of Fluids Engineering,1999,121(2):259-265.
    [164]Guo Shijie. Measurement on the fluid forces induced by rotor-stator interaction in a centrifugal pump [J]. Fluids and Thermal Engineering,2006,49(2):434-442.
    [165]Adkins D R, BRENNEN C E. Analyses of hydrodynamic radial forces on centrifugal pump impellers [J]. ASME Journal of Fluids Engineering,1988,110(1):20-28.
    [166]Chamiah D S. Experimental measurements of hydrodynamic radial forces and stiffness matrices for centrifugal pump [J]. ASME Journal of Fluids Engineering,1985, 107(3):307-315.
    [167]Nyirenda. Experimental Study of Hydrodynamic Forces in Mixed-Flow Pumps[D]. Eindhoven: Technische Universiteit Eindhoven,2003.
    [168]Van Esch B P M. Numerical and experimental investigation of hydrodynamic forces due to non-uniform suction flow to a mixed-flow pump [J]. Proceedings of the ASME fluids engineering division summer meeting, June 19-23,2005, Houston, USA:77208.
    [169]成立.喷水推进混流泵叶片径向力[J].排灌机械工程学报,2012,30(6):636-640.
    [170]Barrio R. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points [J]. Computers & Fluids,2010,39:859-870.
    [171]Feng J J. Application of different turbulence models in unsteady flow simulations of a radial diffuser pump [J]. Forsch Ingenieurwes,2010,74:123-133.
    [172]ZHANG Desheng, SHI Weidong. Unsteady flow analysis and experimental investigation of axial-flow pump [J]. Journal of hydrodynamics.2010,22(1):35-43.
    [173]陈红勋,邹雪莲.单流道泵内部非定常流动特性.机械工程学报,2005,41(11):163-170.
    [174]KRUGER S. Pump sump CFD for vertical pump design [C]. Proceedings of the ASME fluids engineering division summer conference, August 2-6,2009, Colorado, USA:191-198.
    [175]徐朝晖.基于滑移网格与RNG湍流模型计算泵内的动静干扰.工程热物理学报,2005,26(1):66-68.
    [176]施卫东.高比转速斜流泵内部非定常压力脉动特性[J].农业工程学报,2011,27(4):147-152
    [177]Giilich J F. Pressure pulsations in centrifugal pumps[J]. ASME Journal of Vibration Acoustics, 1992,114 (2):272-279.
    [178]游磊.基于振动分析的核电冷却剂泵故障诊断研究[D].成都:成都理工大学,2012.
    [179]倪永燕,袁寿其.利用振动特性诊断流程泵的运行工况[J].排灌机械,2007,25(2):49-53.
    [180]国家标准局.GB10889-89泵的振动测量与评价方法[S].北京:标准出版社,1989.
    [181]国家标准局.GB50265-97泵站设计规范[S].北京:标准出版社,1997.
    [182]吉红香,邱静,林美兰,等.某核电厂一期工程循环水泵房进水流道物理模型试验研究[J].广东水利水电,2010,10:20-24.
    [183]丘传沂编著.泵站工程[M].武汉:武汉大学出版社,2001.
    [184]栾鸿儒编著.水泵及水泵站[M].北京:中国水利水电出版社,1993.
    [185]American National Standard Institute. Pump Intake Design[S].NJ:Hydraulic Institute 1998.
    [186]Charles E, Sween R A. Pump sump design experience[J] Journal of hydraulic division,1982, 108(3):361-377.
    [187]刘竹溪编著.水泵及水泵站(第三版)[M].北京:中国水利水电出版社,2006.
    [188]李大亮.开敞式进水池内部流动的3DPIV实验研究[D].扬州:扬州大学,2004.
    [189]孙衣春.泵站进水池与进水流道数值模拟研究[D].西安:西安理工大学,2008.
    [190]Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Computation Physics,1981,39:201-225.
    [191]仇宝云.大型立式轴流泵导轴承荷载分析计算[J].农业机械学报,2000,31(1):58-61.
    [192]胡德义,王为人,李庆生,等.太浦河泵站斜150轴伸泵水力动态力分析[J].水力发电学报,2002,3:81-87.
    [193]肖若富,吕腾飞,王福军.双蜗壳式双吸泵隔板结构对叶轮径向力的影响[J].农业机械学报,2011,42(9):85-88.
    [194]Van Esch B P M. Performance and Radial Loading of a Mixed-Flow Pump Under Non-Uniform Suction Flow[J]. Journal of Fluids Fngineering,2009,131:11-17.
    [195]Cheng Li. Blade interaction forces in a mixed-flow pump with diffuser [J]. Proceedings of the ASME fluids engineering division summer meeting, August 2-6,2009,Colorado, USA:78114.
    [196]Wang Fujun. CFD simulation of 3D flow in large-bore axial-flow pump [J].Journal of Hydrodynamics,2006,18(2):243-247.
    [197]Spence R.A CFD parametric study of geometrical variations on the pressure-pulsations and performance characteristics of centrifugal pump[J]. Computers & Fluids,2009,38:1243-1257.
    [198]徐智渊.AP1000核电循环水泵选型及配置分析[J].机电工程技术,2012,41(02):75-79.
    [199]周文霞,张继革,王德忠.核电站主泵机组地震响应谱分析及应力评定[J].原子能科学技术,2011,45(1):54-59.
    [200]Zadoyan P, Simos N.Seismic Analysis of the Armenian Nuclear Power Plant[J].SMIRT 17,2003,07-2.
    [201]付强,袁寿其,朱荣生,等.1000 MW核电站SEC系统鼓型滤网抗震计算[J].核动力工程,2010,31(6):10-14.
    [202]Cavalca K L, Okabe E P. An investigation on the influence of the supporting structure on the dynamics of the rotor system [J].Mechanical System and Signal Processing, 2005,19(1):157-174.
    [203]李至昭,姚大坤,柴新华.300MW核电站冷却剂泵电动机转子振动分析[J].大电机技术,2001,03:18-20.
    [204]赵文涛,陈果,李琼,等.航空发动机机匣支承动刚度有限元计算及验证[J].航空计算技术,2011,41(5):34-38.
    [205]洪杰.转子支承动刚度对转子动力特性的影响分析[J].航空发动机,2008,34(1):23-27.
    [206]许文本,焦群英.机械振动与模态分析基础[M].机械工业出版社,1998.
    [207]孙兴华.离心泵转子湿态临界转速计算及边界环境对其动力特性影响[J].2011,2:26-30.
    [208]国家核安全局.HAD102/02,核电厂的抗震设计与鉴定[S].1996.
    [209]US NRC Regulatory Guide 1.60, Design response spectra for seismic design of Nuclear Power Plants [S]. Washington.D.C,1973.
    [210]US NRC Regulatory Guide 1.61, Damping Values for Seismic Design of Nuclear Power Plants [S].Washington.D.C,2007.
    [211]李忠诚.AP1000抗震分析与设计特点研究[J].世界地震工程,2008,24(1):137-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700