用户名: 密码: 验证码:
雷达目标高分辨距离像仿真与识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达自动目标识别技术在军事和民用上拥有巨大的应用价值。随着宽带雷达技术的逐渐成熟,雷达可以获取更多的目标信息,这为雷达自动目标识别技术的发展提供了强有力的支持。作为一种宽带雷达目标回波形式,高分辨距离像(HRRP)是雷达目标回波沿距离维的分布,它可以反映出目标的结构信息,并且具有获取时间短,处理简单等优点,在雷达自动目标识别领域具有较大应用价值。本文主要工作围绕HRRP识别展开,分为两部分:第一部分对雷达目标高频电磁散射计算和HRRP仿真开展研究,开发一套具有工程应用价值的雷达目标高频电磁散射特性分析系统,为雷达目标HRRP识别技术的研发提供具有较高置信度的数据支持。第二部分在仿真数据的基础上对雷达目标HRRP识别技术开展研究,主要针对雷达目标HRRP识别中的目标姿态敏感性问题研究基于特征加权系数优化的HRRP识别、基于半参数化统计模型的HRRP识别和基于子空间特征提取的HRRP识别,目的是为今后的实际工程应用做出有益的探索和技术积累。
     本文主要研究工作与贡献如下:
     1、雷达目标HRRP识别技术的研发离不开HRRP数据的支持,本文主要采用电磁仿真手段建立HRRP数据库。根据雷达目标电磁散射计算的特点和目标识别应用方向,研究了基于高频渐近技术的雷达目标高频电磁散射计算和HRRP仿真。此外,针对具有超电大尺寸的舰船类目标,研究了近场目标高频电磁散射计算和HRRP仿真,并采用基于KdTree的射线跟踪加速算法和基于高性能计算(HPC)的任务级并行计算对高频电磁散射计算做了加速改进。最后,在理论工作的基础上,研发了一套集几何建模、高频电磁散射计算以及数据分析为一体的极具航空航天特色的雷达目标高频电磁散射特性分析系统。
     2、研究了基于特征加权系数优化的HRRP识别。由于特征加权距离像模板可以看作是一种与HRRP回波统计模型无关的距离像模板,它利用特征加权系数对HRRP输入特征空间进行坐标尺度变换,以此改变原始输入特征空间中的几何距离度量关系,从而避免了对HRRP距离分辨单元回波幅值统计模型的建立。本文通过定义HRRP样本在特征尺度变换空间中的可分性度量,设计了一种HRRP特征加权系数优化目标函数,并在此基础上提出了一种基于特征加权系数优化的HRRP识别算法。同时,本文还研究了基于核方法的特征加权系数优化,给出了一种针对支持向量机(SVM)分类器的HRRP特征加权系数优化方法,该方法可以做到将核参数优化过程和SVM求解过程统一起来。
     3、研究了基于半参数化统计模型的HRRP识别。针对因HRRP各距离分辨单元回波幅值统计分布的复杂性而面临的类条件概率密度模型选择问题,提出一种基于半参数化概率密度估计的雷达目标识别方法,该方法将HRRP各距离分辨单元回波幅值统计分布模型统一起来,达到了概率密度估计中参数化方法和非参数化方法优缺互补的目的。同时,为了解决基于Parzen窗函数的半参数化概率密度估计在数据量较大时执行效率下降的问题,提出一种基于核方法的半参数化概率密度估计方法,该方法有效降低了概率密度函数表出所需样本量,提高了计算效率。
     4、研究了基于子空间特征提取的HRRP识别。本文主要研究了核Fisher判别分析(KFDA)和核主分量分析(KPCA)两种子空间特征提取技术在雷达目标HRRP识别中的应用。对于KFDA,针对Fisher判别准则在核参数优化过程中可能面临的数值不稳定问题,本文采用Fisher判别准则下界作为核参数优化目标函数对KFDA进行优化,并将其应用于HRRP特征提取与目标识别。对于KPCA,本文提出一种基于KPCA重构的雷达目标HRRP识别方法,该方法通过计算HRRP样本在高维特征空间中的重构误差来代替距离度量,解决了HRRP幅值分布的非高斯性问题,并松弛了角域划分要求。
Radar automatic target recognition (RATR) plays an important role in military and civilian field.With the development of wideband radar techniques, more and more useful target information can beobtained, and it provides strong supports for RATR. As a form of wideband radar target returned ech-oes, high-resolution range profile (HRRP) is the amplitude distribution of returned echoes along theradar line-of-sight, and it contains target structure information. Moreover, HRRP has the advantagesof easy acquisition and processing, thereby radar target HRRP recognition is of great value in theRATR community. This thesis focuses on radar target HRRP recognition, and mainly consists of twoparts. In the first part, high-frequency electromagnetic scattering calculation and HRRP simulation forcomplex radar targets are studied and corresponding valuable software is also developed for engi-neering, which aims at providing relatively high quality data support for radar target HRRP recogni-tion. In the second part, based on the simulated HRRP dataset, radar target HRRP recognition is re-searched from tree aspects for solving HRRP target aspect sensitivity problem, including feature scal-ing coefficients optimization, semi-parametric statistical modeling, and subspace feature extraction.Altogether, the main purpose of this thesis intends to make a useful exploration and technology ac-cumulation for RATR engineering application in the future.
     In summary, the main contents and contribution of this thesis are listed as follows:
     1. Research and development of radar target HRRP recognition can not do without the support ofHRRP data. In this thesis, HRRP dataset is established by electromagnetic scattering simulation. Ac-cording to the feature of electromagnetic scattering calculation for radar targets and for the purpose ofRATR application, high-frequency and asymptotic method for radar target high-frequency electro-magnetic scattering calculation and HRRP simulation is adopted. In addition, near field high-fre-quency electromagnetic scattering and HRRP simulation for extremely electrically large radar target,like ship target, is also studied. Meanwhile, KdTree based ray tracing algorithm and high performancecomputing (HPC) based task-level parallelism are both used for calculating acceleration. Finally, onthe basis of theoretical work, the radar target high-frequency electromagnetic scattering characteristicsanalysis software containing geometric modeling, high-frequency electromagnetic scattering calcula-tion, and data analyzing is developed.
     2. Feature scaling coefficients optimization based HRRP recognition is studied. For the reasonthat feature scaling HRRP template can be seem as a template which is independent with statistic model of HRRP returned echoes, it changes the geometric distance metric compared with originalHRRP feature space by coordinate-scale transformation, and avoids statistic model establishing forHRRP returned echoes. In this thesis, by defining the separability criterion of HRRP patterns in thetransformed feature scaling space, a HRRP feature scaling coefficients optimization objective functionis designed, and a HRRP recognition approach based on feature scaling optimization is proposed. Be-sides, feature scaling coefficients optimization based on kernel method is also studied. This thesisprovides a HRRP feature scaling coefficients optimization approach in view of the support vectormachine (SVM) classifier. The given approach works well owing to the consistency between kerneloptimization and SVM solution.
     3. Semi-parametric statistical modeling based HRRP recognition is studied. According to theclass-conditional probability density model selection problem caused by the complex statistic distri-bution of returned echo in each HRRP range cells, a radar HRRP recognition approach based on thesemi-parametric probability density is proposed. The proposed approach unifies the statistic distribu-tion model, and both advantages of parametric method and nonparametric method are merged in thesemi-parametric density estimation. However, when the Parzen window based semi-parametric isused and large data quantity is appeared, the execution efficiency reduces. In order to solve this prob-lem, a semi-parametric probability density approach based on kernel method is proposed. The pro-posed approach reduces the needs of samples for probability density function representation, and im-proves the computational efficiency.
     4. Subspace feature extraction based HRRP recognition is studied. In this thesis, two subspacefeature extraction methods including kernel fisher discriminant analysis (KFDA) and kernel principalcomponent analysis (KPCA) is applied to HRRP recognition. For KFDA, considering the numericalinstability problem when optimizing kernel parameters using Fisher’s discriminant criterion, the lowerbound of Fisher’s discriminant criterion is used as the kernel parameter optimization objective func-tion for KFDA, and applied it to HRRP feature extraction and recognition. For KPCA, an approachbased on kernel principle component analysis reconstruction is proposed. To this approach, the type oftest sample is determined by the minimum reconstruction error instead of distance measure, whichsolves the HRRP non-Guassian distribution problems and relaxes the angle division rules.
引文
[1]吴顺君,梅晓春.雷达信号处理和数据处理技术.北京:电子工业出版社,2008.
    [2] Wehner D. R. High-Resolution Radar. Norwood, MA: Artech House,1987.
    [3] Knott E. F., Shaeffer J. F., Tuley M. T.雷达散射截面——预估、测量和减缩(阮颖铮,陈海等译).北京:电子工业出版社,1988.
    [4]倪迎红,陈玲.雷达目标识别及发展趋势预测.电讯技术,2009,49(11):98-102.
    [5] Andersh D., Moore J., Kosanovich S., et al. Xpatch4: The Next Generation in High FrequencyElectromagnetic Modeling and Simulation Software. IEEE International Radar Conference,2000:844-849.
    [6] Rius J. M., Ferrando M., Jofre L. High-Frequency RCS of Complex Radar Targets in Real-Time.IEEE Transactions on Antennas and Propagation,1993,41(9):1308-1319.
    [7] Margarit G., Mallorqui J. J., Rius J. M., et al. On the Usage of GRECOSAR, an Orbital Po-larimetric SAR Simulator of Complex Targets, to Vessel Classification Studies. IEEE Transac-tions on Geoscience and Remote Sensing,2006,44(12):3517-3526.
    [8]聂在平,方大纲.目标与环境电磁散射特性建模——理论、方法与实现(应用篇).北京:国防工业出版社,2009.
    [9]陶煜波.基于图形硬件的快速电磁计算方法与系统,[博士学位论文].杭州:浙江大学,2009.
    [10]刘先康,梁菁,任杰等.基于Fisher判决率加权的修正最近邻模糊分类器设计.舰船科学技术,2010,32(2):68-72(+82).
    [11]孙菲,梁菁,任杰等.一种基于高阶谱特征的舰船目标识别方法.舰船科学技术,2011,33(7):105-107(+118).
    [12]马林.高分辨雷达目标识别系统技术研究.电子学报,2009,37(12):2633-2638.
    [13]盛新庆.计算电磁学要论(第二版).合肥:中国科技大学出版社,2008.
    [14] Kline M., Kay I. Electromagnetic Theory and Geometrical Optics. New York: Wilay In-ter-science,1965.
    [15] Bhattacharyya A. K. High-Frequency Techniques: Recent Advance and Applications. New York:John Wiley&Sons,1995.
    [16] Shirman Y. D. Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection,and Tracking. London: Artech House,2002.
    [17] Park S.-H., Jung J.-H., Kim H.-T., et al. Construction of2D Training Database Based onHigh-Frequency RCS Prediction Methods. Microwave and Optical Technology Letters,53(1):223-229.
    [18]黄培康等.雷达目标特征信号.北京:宇航出版社,1993.
    [19] Rius J. M., Ferrando M., Jofre L. GRECO: Graphical Electromagnetic Computing for RCS Pre-diction in Real Time. IEEE Antennas and Propagation Magazine,1993,35(2):7-17.
    [20] Ling H., Chou R. C., Lee S. W. Shooting and Bouncing Rays: Calculating the RCS of an Arbi-trarily Shaped Cavity. IEEE Transactions on Antennas and Propagation,1989,37(2):194-205.
    [21] Baldauf J., Lee S. W., Lin L., et al. High Frequency Scattering from Trihedral Corner Reflectorsand Other Benchmark Targets: SBR Versus Experiment. IEEE Transactions on Antennas andPropagation,1991,39(9):1345-1351.
    [22]昂海松,舒永泽,周建江等.复杂目标RCS计算的新方法——曲面像素法.电子与信息学报,2001,23(10):962-969.
    [23]秦德华,王宝发,刘铁军. GRECO中棱边检测方法及其绕射场计算的改进.电子学报,2003,31(8):1160-1163.
    [24]杨正龙,金林,倪晋麟等.复杂目标双站RCS的图形电磁计算.电子学报,2004,32(6):1033-1035.
    [25] Sundararajan P., Niamat M. Y. FPGA Implementation of the Ray Tracing Algorithm Used in theXpatch Software. IEEE Midwest Symposium on Circuits and Systems,2001:14-17.
    [26] Suk S., Seo T.-I., Park H.-S., et al. Multiresolution Grid Algorithm in the SBR and Its Applica-tion to the RCS Calculation. Microwave and Optical Technology Letters,2001,29(6):394-397.
    [27] Jin K. S., Suh T. I., Suk S. H., et al. Fast Ray Tracing Using a Space-Division Algorithm forRCS Prediction. Journal of Electromagnetic Waves and Applications,2006,20(1):119-126.
    [28] Bang J. K., Kim B. C., Suk S. H., et al. Time Consumption Reduction of Ray Tracing for RCSPrediction Using Efficient Grid Division and Space Division Algorithms. Journal of Electro-magnetic Waves and Applications,2007,21(6):829-840.
    [29] Tao Y. B., Lin H., Bao H. J. GPU-Based Shooting and Bouncing Ray Method for Fast RCS Pre-diction. IEEE Transactions on Antennas and Propagation,2010,58(2):494-502.
    [30] Bhalla R., Hao L. A Fast Algorithm for Signature Prediction and Image Formation Using theShooting and Bouncing Ray Technique. IEEE Transactions on Antennas and Propagation,1995,43(7):727-731.
    [31]王海彬,金林,杨正龙等.宽带雷达回波的高频电磁散射快速算法.现代雷达,2010,32(2):38-42.
    [32] Xing M. D., Bao Z., Pei B. N. Properties of High-Resolution Range Profiles. Optical Engineer-ing,2002,41(2):493-504.
    [33]廖学军.基于高分辨距离像的雷达目标识别,[博士学位论文].西安:西安电子科技大学,1999.
    [34] Du L., Liu H. W., Bao Z., et al. Radar HRRP Target Recognition Based on Higher Order Spec-tra. IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
    [35] Du L., Liu H. W., Bao Z., et al. A Two-Distribution Compounded Statistical Model for RadarHRRP Target Recognition. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [36] Du L., Liu H. W., Bao Z. Radar HRRP Statistical Recognition: Parametric Model and ModelSelection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [37] Webb A. R. Gamma Mixture Models for Target Recognition. Pattern Recognition,2000,33(12):2045-2054.
    [38]刘敬,张军英,杜兰.基于相关系数的雷达高分辨距离像分帧方法.电子与信息学报,2008,30(9):2060-2064.
    [39]陈凤,侯庆禹,刘宏伟等.一种新的雷达HRRP自适应划分角域建模方法.西安电子科技大学学报,2009,36(3):410-417.
    [40]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法.电子与信息学报,2008,30(1):198-202.
    [41] Chen B., Liu H. W., Yuan L., et al. Adaptively Segmenting Angular Sectors for Radar HRRPAutomatic Target Recognition. EURASIP Journal on Advances in Signal Processing,2008.
    [42] Jacobs S. P. Automatic Target Recognition Using High-Resolution Radar Range Profiles,[博士学位论文]. Washington: Washington University,1999.
    [43]赵峰,张军英,刘敬等.基于非参数化概率密度估计的雷达目标识别.电子与信息学报,2008,30(7):1740-1743.
    [44]赵峰,张军英,刘敬等.基于Gamma-SLC混合密度估计的雷达目标识别.系统工程与电子技术,2008,30(3):438-443.
    [45]杜兰,刘宏伟,保铮等.一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法.电子学报,2005,33(3):411-415.
    [46] Du L., Liu H. W., Bao Z. Radar HRRP Statistical Recognition Based on Hypersphere Model.Signal Processing,2008,88(5):1176-1190.
    [47]侯庆禹,陈凤,刘宏伟等.一种稳健的雷达高分辨距离像目标识别算法.系统工程与电子技术,2010,32(6):1156-1160.
    [48]付强,周剑雄,秦敬喜等.雷达目标散射中心模型反演及其在识别中的应用.系统工程与电子技术,2011,33(1):48-52.
    [49]裴炳南,保铮.基于目标散射中心和HMM分类的多视角雷达目标识别方法.电子学报,2003,31(5):786-789.
    [50]王菁.光学区雷达目标散射中心提取及其应用研究[博士学位论文].南京:南京航空航天大学,2010.
    [51]付耀文,贾宇平,庄钊文.基于一维散射中心匹配的雷达目标识别.电子学报,2006,34(3):404-408.
    [52]姜卫东.光学区雷达目标结构成像的理论及其在雷达目标识别中的应用[博士学位论文].长沙:国防科学技术大学,2000.
    [53] Liao X., Runkle P., Carin L. Identification of Ground Targets from Sequential High-Range-Resolution Radar Signatures. IEEE Transactions on Aerospace and Electronic Systems,2002,38(4):1230-1242.
    [54] Runkle P. R., Bharadwaj P. K., Couchman L., et al. Hidden Markov Models for MultiaspectTarget Classification. IEEE Transactions on Signal Processing,1999,47(7):2035-2040.
    [55] Bharadwaj P. K., Runkle P. R., Carin L. Target Identification with Wave-Based Matched Pur-suits and Hidden Markov Models. IEEE Transactions on Antennas and Propagation,1999,47(10):1543-1554.
    [56] Bharadwaj P., Runkle P., Carin L., et al. Multiaspect Classification of Airborne Targets ViaPhysics-Based HMMs and Matching Pursuits. IEEE Transactions on Aerospace and ElectronicSystems,2001,37(2):595-606.
    [57] Jacobs S. P., O'Sullivan J. A. Automatic Target Recognition Using Sequences of High Resolu-tion Radar Range-Profiles. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):364-382.
    [58] Zhu F., Zhang X. D., Hu Y. F., et al. Nonstationary Hidden Markov Models for Multiaspect Dis-criminative Feature Extraction from Radar Targets. IEEE Transactions on Signal Processing,2007,55(5):2203-2214.
    [59] Fielding K. H., Ruck D. W. Spatio-Temporal Pattern Recognition Using Hidden Markov Mod-els. IEEE Transactions on Aerospace and Electronic Systems,1995,31(4):1292-1300.
    [60] Zhou D., Liu G., Wang J. Spatio-Temporal Target Identification Method of High-Range Resolu-tion Radar. Pattern Recognition,2000,33(1):1-4.
    [61]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究,[博士学位论文].西安:西安电子科技大学,2008.
    [62] Chen B., Liu H. W., Bao Z. An Efficient Kernel Optimization Method for Radar High-Resolu-tion Range Profile Recognition. EURASIP Journal on Advances in Signal Processing,2007.
    [63]于雪莲,刘本永.最优的核判别分析用于雷达目标识别.电子科技大学学报,2008,37(6):883-885+937.
    [64] Bo L. F., Wang L., Jiao L. C. Feature Scaling for Kernel Fisher Discriminant Analysis UsingLeave-One-Out Cross Validation. Neural Computation,2006,18(4):961-978.
    [65]刘华林,杨万麟.基于GSVD的核不相关辨别子空间与雷达目标识别.电子与信息学报,2009,31(5):1095-1098.
    [66]于雪莲,汪学刚,刘本永.基于KLLE和KNR的雷达目标一维像识别.现代雷达,2008,30(10):39-42.
    [67] Liu H. W., Bao Z. Radar HRR Profiles Recognition Based on SVM with Power-Transformed-Correlation Kernel. Lecture Notes in Computer Science,2004,3173:531-536.
    [68] Chen B., Liu H., Bao Z. A Kernel Optimization Method Based on the Localized Kernel FisherCriterion. Pattern Recognition,2008,41(3):1098-1109.
    [69]郭雷,肖怀铁,付强.非均衡数据目标识别中SVM模型多参数优化选择方法.红外与毫米波学报,2009,28(2):141-145.
    [70]郭雷,肖怀铁,付强.目标识别中特征空间核矩阵收缩方法.自然科学进展,2008,18(12):1467-1473.
    [71]曹向海.雷达高分辨距离像特征提取及识别算法研究,[博士学位论文].西安:西安电子科技大学,2008.
    [72] Zwart J. P., van der Heiden R., Gelsema S., et al. Fast Translation Invariant Classification ofHRR Range Profiles in a Zero Phase Representation. IEE Proceedings Radar Sonar and Navi-gation,2003,150(6):411-418.
    [73]陈渤,刘宏伟,保铮.一种基于零相位表示法的HRRP识别方法.西安电子科技大学学报,2005,32(5):657-662.
    [74]陈渤,刘宏伟,保铮.基于三种不同绝对对齐方法的分类器的分析与研究.现代雷达,2006,28(3):58-62.
    [75]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报,2004,32(12):2078-2081.
    [76]刘敬,张军英,赵峰.一种新的雷达高分辨距离像平移不变特征.电子与信息学报,2008,30(8):1949-1953.
    [77]曹向海,刘宏伟,吴顺君.基于距离像幅度信息和boosting的目标识别研究.系统工程与电子技术,2007,29(10):1628-1630.
    [78]杜兰.雷达高分辨距离像目标识别方法研究,[博士学位论文].西安:西安电子科技大学,2007.
    [79]刘敬.雷达一维距离像特征提取与识别方法研究,[博士学位论文].西安:西安电子科技大学,2008.
    [80]刘敬,张军英,赵峰.基于SVM与非参数LDA的雷达自动目标识别.控制与决策,2007,22(11):1250-1254.
    [81]刘敬,张军英,赵峰.基于direct LDA的幅度谱子空间雷达目标识别.系统工程与电子技术,2008,30(10):1815-1818.
    [82] Tugnait J. K. Detection of Non-Gaussian Signals Using Integrated Polyspectrum. IEEE Trans-actions on Signal Processing,1994,42(11):3137-3149.
    [83] Chandran V., Carswell B., Boashash B., et al. Pattern Recognition Using Invariants Definedfrom Higher Order Spectra:2-D Image Inputs. IEEE Transactions on Image Processing,1997,6(5):703-712.
    [84] Liao X. J., Bao Z. Circularly Integrated Bispectra: Novel Shift Invariant Features for High-Resolution Radar Target Recognition. Electronics Letters,1998,34(19):1879-1880.
    [85] Zhang X. D., Shi Y., Bao Z. A New Feature Vector Using Selected Bispectra for Signal Classi-fication with Application in Radar Target Recognition. IEEE Transactions on Signal Processing,2001,49(9):1875-1885.
    [86]曹向海,刘宏伟,吴顺君.基于奇异值分解的双谱降维研究.宇航学报,2007,28(5):1319-1322.
    [87]陈凤,杜兰,刘宏伟等.一种利用强度信息的雷达HRRP自动目标识别方法.电子学报,2009,37(3):459-463.
    [88]聂在平,方大纲.目标与环境电磁散射特性建模——理论、方法与实现(基础篇).北京:国防工业出版社,2009.
    [89]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社,1998.
    [90] Suk S., Seo T. I., Park H. S., et al. Multiresolution Grid Algorithm in the SBR and Its Applica-tion to the RCS Calculation. Microwave and Optical Technology Letters,2001,29(6):394-397.
    [91]何国瑜,卢才成,洪家才等.电磁散射的计算和测量.北京:北京航空航天大学出版社,2006.
    [92] Gordon W. Far-Field Approximations to the Kirchoff-Helmholtz Representations of ScatteredFields. IEEE Transactions on Antennas and Propagation,1975,23(4):590-592.
    [93]庄钊文,袁乃昌,莫锦军等.军用目标雷达散射截面预估与测量.北京:科学出版社,2007.
    [94] Lee S. W., Mittra R. Fourier Transform of a Polygonal Shape Function and Its Application inElectromagnetics. IEEE Transactions on Antennas and Propagation,1983, AP-31(1):99-103.
    [95] Michaeli A. Equivalent Edge Currents for Arbitrary Aspects of Observation. IEEE Transactionson Antennas and Propagation,1984, AP-32(3):252-258.
    [96]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2006.
    [97]黄德双.高分辨雷达智能信号处理技术.北京:机械工业出版社,2001.
    [98] Bourlier C., Pouliguen P. Useful Analytical Formulae for near-Field Monostatic Radar CrossSection under the Physical Optics: Far-Field Criterion. IEEE Transactions on Antennas andPropagation,2009,57(1):205-214.
    [99]余定峰,陈谦,姚菁晶等.海上舰船目标HRRP特性仿真.系统工程与电子技术,2010,32(12):2552-2556.
    [100]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社,2008.
    [101] Pharr M., Humphreys G. Physically Based Rendering from Theory to Implementation. SanFrancisco, CA: Morgan Kaufmann Publishers Inc.,2004.
    [102]周代英,杨万麟.基于加权核函数的雷达目标一维距离像识别.仪器仪表学报,2008,29(11):2394-2398.
    [103] Zhang D. Q., Chen S. C., Zhou Z. H. Learning the Kernel Parameters in Kernel Minimum Dis-tance Classifier. Pattern Recognition,2006,39(1):133-135.
    [104]朱剑英.智能系统非经典数学方法.武汉:华中科技大学出版社,2001.
    [105] Zhang Z., Zha H. Principal Manifolds and Nonlinear Dimensionality Reduction Via Local Tan-gent Space Alignment. SIAM Journal of Scientific Computing,2004,26(1):313-338.
    [106]郭雷.宽带雷达目标极化特征提取与核方法识别研究,[博士学位论文].长沙:国防科学技术大学,2009.
    [107]于雪莲.基于核方法和流形学习的雷达目标距离像识别研究,[博士学位论文].成都:电子科技大学,2008.
    [108] Duda R. O., Hart P. E., Stork David G.李宏东等译模式分类.北京:机械工业出版社,2003.
    [109] Mika S., Ratsch G., Weston J., et al. Fisher Discriminant Analysis with Kernels. IEEE Proceed-ings of the Neural Networks for Signal Processing IX,1999:41-48.
    [110] Gonen M., Alpaydin E. Localized Multiple Kernel Learning. Conference of Association forComputing Machinery,2008:352-359.
    [111] Hsu C. W., Lin C. J. A Comparison of Methods for Multiclass Support Vector Machines. IEEETransactions on Neural Networks,2002,13(2):415-425.
    [112] Williams R., Westerkamp J., Gross D., et al. Automatic Target Recognition of Time CriticalMoving Targets Using1D High Range Resolution (HRR) Radar. IEEE Aerospace and Elec-tronic Systems Magazine,2000,15(4):37-43.
    [113] van der Heiden R., Groen F. C. A. Box-Cox Metric for Nearest Neighbour Classification Im-provement. Pattern Recognition,1997,30(2):273-279.
    [114] Copsey K., Webb A. Bayesian Gamma Mixture Model Approach to Radar Target Recognition.IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1201-1217.
    [115] Xu L., Krzyzak A., Oja E. Rival Penalized Competitive Learning for Clustering Analysis, RBFNet, and Curve Detection. IEEE Transactions on Neural Networks,1993,4(4):636-649.
    [116] Hjort N. L., Glad I. Nonparametric Density Estimation with a Parametric Start. Annals of Sta-tistics,1995,23(3):882-904.
    [117] Chaudhuri P., Ghosh A. K., Oja H. Classification Based on Hybridization of Parametric andNonparametric Classifiers. IEEE Transactions on Pattern Analysis And Machine Intelligence,2009,31(7):1153-1164.
    [118] Ghosh A. K., Bandyopadhyay S. Adaptive Smoothing in Kernel Discriminant Analysis. Journalof Nonparametric Statistics,2006,18(2):181-197.
    [119] Choi S. C., Wette R. Maximum Likelihood Estimation of the Parameters of the Gamma Distri-bution and Their Bias. Technometrics,1969,11(4):683-690.
    [120] Ghosh A. K., Chaudhuri P. Optimal Smoothing in Kernel Discriminant Analysis. StatisticaSinica,2004,14(2):457-483.
    [121] Weston J., Gammerman A., Stitson M., et al. Support Vector Density Estimation. Cambridge,MA: MIT Press,1999.
    [122] Mantero P., Moser G., Serpico S. B. Partially Supervised Classification of Remote Sensing Im-ages Using SVM-Based Probability Density Estimation. IEEE Transactions on Geoscience andRemote Sensing,2005,43(3):559-570.
    [123]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.北京:科学出版社,2004.
    [124]柴晶.雷达高分辨距离像目标识别的拒判算法和特征提取技术研究,[博士学位论文].西安:西安电子科技大学,2010.
    [125] Blanchard G., Bousquet O., Zwald L. Statistical Properties of Kernel Principal ComponentAnalysis. Machine Learning,2007,66(2-3):259-294.
    [126] Wang L. Feature Selection with Kernel Class Separability. IEEE Transactions on Pattern Analy-sis And Machine Intelligence,2008,30(9):1534-1546.
    [127] Wang L., Chan K. L., Xue P., et al. A Kernel-Induced Space Selection Approach to Model Se-lection in KLDA. IEEE Transactions on Neural Networks,2008,19(12):2116-2131.
    [128] Xiong H. L., Swamy M. N. S., Ahmad M. O. Optimizing the Kernel in the Empirical FeatureSpace. IEEE Transactions on Neural Networks,2005,16(2):460-474.
    [129] Asuncion A., Newman D. J. UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/mlrepository.html]. University of California, Irvine, School of Information and Com-puter Sciences.
    [130] Saadi K., Talbot N. L. C., Cawley G. C. Optimally Regularised Kernel Fisher DiscriminantAnalysis., Proceedings of the17th International Conference on Pattern Recognition,2004,:427-430.
    [131] Scholkopf B., Smola A., Muller K. R. Nonlinear Component Analysis as a Kernel EigenvalueProblem. Neural Computation,1998,10(5):1299-1319.
    [132] Scholkopf B., Mika S., Smola A., et al. Kernel PCA Pattern Reconstruction Via ApproximatePre-Images. Skovde, Sweden: Springer-Verlag London,1998:147-152.
    [133] Du L., Liu H., Bao Z., et al. Radar Automatic Target Recognition Using Complex High-Reso-lution Range Profiles. IET Radar Sonar and Navigation,2007,1(1):18-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700