用户名: 密码: 验证码:
高分辨率极化SAR影像典型线状目标半自动提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)作为主动式的微波传感器,具有全天候、全天时的优点,在军用和民用中均发挥着越来越重要的作用。随着雷达技术的发展,数据获取能力得到快速增长,SAR呈现出多波段、多极化、高分辨率的特点。与数据获取能力相比,影像解译技术的发展却相对滞后。其中线状目标提取更是影像解译的重要内容之一,如道路、输电线等典型线状目标的提取与监测在国民经济建设和国防建设中均具有重要意义,然而受到斑点噪声及目标的复杂性等因素影响,典型线状目标提取的可靠性仍面临着较大挑战。高分辨率极化SAR影像包含丰富的空间信息和完整的目标后向散射信息,为这一问题的解决提供了新的途径。如何利用高分辨率极化SAR影像中的丰富信息成为当前线状目标提取的关键问题之一
     线状目标提取可分为半自动和自动两类,全自动方法是当前研究的热点,也是线状目标提取研究的最终方向,但基于线状的解译理论与技术实现全自动提取还需要一段很长的时间,而半自动提取技术能够融合计算机的精准快速计算能力和作业员的可靠识别能力,是当前条件下一种面向工程应用的较好处理方法,具有重要的实用价值,也是当前研究的热点。道路和输电线作为SAR影像上非常重要的两类典型线目标,是SAR影像线状目标提取技术领域重点研究的对象。道路由于类别多样,形态各异,且受斑点噪声影响,尤其受桥梁(天桥)、车辆等地物严重干扰等问题,提取困难;而输电线存在信杂比极低的问题,基于功率的传统方法难以奏效。
     本文重点针对道路和输电线的半自动提取问题,利用高分辨率极化SAR影像,从地物散射特性和几何特性出发,深入研究了斑点噪声抑制、边缘检测、基于极化SAR影像单类分类的道路种子点提取、道路半自动跟踪和基于极化相干性的输电线检测等关键技术,提出了从预处理、初级处理等通用处理到道路和输电线等典型目标专用处理的技术路线,从而实现了典型线状目标——道路和输电线的半自动提取。主要研究内容如下:
     首先针对SAR滤波既要保持线状特征又要抑制斑点噪声的问题,提出了一种保持空间结构特征和散射特性的滤波方法。该方法在空间结构丰富的区域,使用了边缘、线状和方形同质窗,能减少虚假边缘和降低真实边缘的模糊,侧重于保持空间结构的完整性;在同质区域内,滤波仅在相同散射机制的像素间进行,侧重于极化信息的保持;最后根据空间结构类型,自适应融合前后两者的滤波结果。然后通过实验定性和定量地评价了该方法在斑点噪声抑制、空间结构和散射机制保持方面的性能。
     其次为克服斑点噪声的影响,充分发挥极化数据的优势,结合自适应极化最优对比增强技术(Adaptive Optimal Polarimetry Contrast Enhancement, AOPCE)和均值比(Ratio of Averaging, ROA)算子提出了一种自适应对比增强-均值比(AOPCE-ROA)边缘检测算法,能得到不同极化方式下边缘响应的最大值,并推导了其快速处理方法,最后从理论上分析了其余ROA算子的关系,并推广到了更一般的情况。同时,利用模拟数据和真实数据进行了实验,结果表明该方法利用极化合成技术,提高了极化信息利用率,更好地克服了噪声影响,得到了更好的边缘检测结果。
     接着针对道路提取中只对道路类别感兴趣而很少关心其他类别的问题,将基于结构风险最小化和核思想的支持向量数据描述单类分类算法引入极化SAR影像的监督分类中,并讨论了极化SAR单类分类中的特征选择与分类参数优化问题,通过实验验证了该算法在小样本单类监督分类中的有效性。在此基础上,综合极化支持向量数据描述单类分类的结果和线状特征检测结果,提出了道路种子点指数,并用于自动提取道路种子点,实验表明该方法提高了道路跟踪中初始化的效率。
     然后针对SAR影像上道路受其它地物干扰严重的问题,在自适应贝叶斯滤波框架下,提出了初始化→预测→观测→校正的道路迭代跟踪方法。该方法建立了道路跟踪的离散系统模型,利用基于线性畸变模型的加权最小二乘多视匹配方法获取道路中心观测值,并基于自适应贝叶斯滤波方法充分地利用已有观测值,通过自适应地调整步长迭代的方法实现道路跟踪。利用开发的道路跟踪原型软件系统进行了实验,结果表明改进方法充分利用了贝叶斯两种实现形式卡尔曼滤波和粒子滤波的优势,提高了道路提取的效率。
     最后利用偶极子对输电线的极化散射特性进行了建模,,先分析了影响输电线后向散射的雷达入射角和极化方位角,然后根据输电线和背景杂波的方位向对称性差异,基于同极化和交叉极化的相干系数及其分布,提出了该特殊线状目标的恒虚警率检测方法。其中相干系数在Hough域进行估首,保证了样本总数足够多且都来自可能的输电线像素,提高了估首精度;对沿着方位向满足方位对称的输电线,人为引入极化方位角,使输电线与背景得到有效区分。最后使用模拟数据和机载P波段极化SAR影像验证了所提方法的有效性。
Synthetic Aperture Radar (SAR) is an active microwave sensor, and has the advantage of working all-weather and all-time. Recently, SAR has been widely applied in both military and civil. With the development of radar system, SAR remote sensing is with multi-frequency, multi-polarization, high-resolution. However, compared with the data acquisition, image interpretation was less developed. Typical linear targets are important to military, politics, and economics, such as roads and transmission lines. Therefore they become significant parts of topographic features to be interpreted. However, due to the disturbance by speckle and the complxity of linear features, it is very challenging to interpret these targets with high confidence. Furthermore, the existing methods were mainly focused on the target extraction from the low-and median-resolution images. The high-resolution polarimetric SAR images provide another way to this problem for their rich spatial details and full backscattering information from the terrain targets. Currently, to process and to analysis such information is one of key issues for linear target extraction. Based on the current theory and technologies, it would be hard to realize fully automatic linear feature recognition. Therefore, the semiautomatic method is more prefered, because it can make use of both the accurate and fast computing ability of computers and the high reliable pattern recognition ability of humankind, and has good potentials in applications.
     According to the published papers, there are kinds of linear features in high-resolution polarimetric SAR images, and different methods are required to deal with different targets for their individual geometric and scattering characteristics. For example, roads, appearing as long and dark areas, varies with shapes and sizes, which are depressed by speckle seriously and disturbed by the objects besides them, over-line bridge, river bridge, cars or trucks, etc. transmission line as one of other typical linear targets, is of low signal-to-clutter ratio, and difficult to detect by traditional methods using intensity images. To solve these problems, aiming at better utilizing the scattering and geometric characteristics of interesting targets, we focused our research on key problems of the semiautomatic extraction of typical linear features from high-resolution polarimetric SAR images. After the research of the edge detector, speckle filter, road seeds extractor using one class classifier of polarimetric SAR images, semiautomatic road tracer, and transmission line detector using polarimetric coherence, and we finally constructed a semiautomatic working framework of "edge detecting—line preservative preprocessing—seed extraction—target tracing—special target detecting". The validity of the proposed method is demonstrated by a set of experiments. Overall, the research work in the paper contains some contributions as following:
     Firstly, aiming at to preserve linear features, a filter fusing a spatial detail-preserving filter and polarimetric scattering preserving filter was proposed. To avoid enhancing false edges and smearing true edges, two more sub-windows--the ribbon-like and the square-shaped masks--are introduced compared with the refined Lee filter. To preserve the scattering mechanism in the homogeneous areas, the filter is carried out only for the pixels with the same scattering class. Finally, both filters are fused based on the spatial structure type. The speckle reduction, spatial preservation, and scattering preservation are evaluated by the experiments qualitatively and quantitatively.
     Secondly, to make full use of polarimetric data, we proposed AOPCE-ROA for edge detection by combing adaptive polarimetry optimal contrast enhancement and ratio of averaging, and derived its fast version. The speckle is suppressed, and a maximum response of edges is obtained, because more scattering information is used by polarimetry synthesis.
     Thirdly, for the tracer initialization is very important for the efficiency and accuracy, a seed extractor was proposed based on the road seed index and polarimetric Support Vector Data Description (SVDD) one-class classifier. After discussing the one-class classification, the SVDD based on the structure risk minimization and kernel tricks was first introduced to the supervised polarimetric classification, and the optimal feature vector and optimal classifier parameters were discussed. The validity of the method for small training samples was tested by experiments. Using the classification results and the line detector response, a road seed index was proposed and used to extract road seeds.
     Fourthly, to reduce the disturbance of the obstacles on the road in SAR images, a semiautomatic road tracer by the "predict-measure-correct" under the framework of adaptive Bayesian filter using the profile and rectangular matching methods to obtain the road center measurement was proposed. Specifically, we firstly discussed the road tracer initialization using the seeds extracted previously. Then the observation is obtained by the weighted least square errors methods using the linear geometric and radiometric distortion model. Finally, based on the discrete road tracing system model, the road is traced using the adaptive Bayesian filter, utilizing all the observations current and before, with few supervision from users, which automatically switches the two form of Bayesian filter, the Kalman filter and Particle filter, and automatically adjust the tracing steps. It is demonstrated by the experiment using the developed prototype software that, the improved tracer makes good use of the both filter, can avoid most of the disturbance from obstacles on the road. The roads can be extracted reliably and efficiently, supervised by the user, with the observations measured by the profile and rectangular matching for the narrow and wide roads, respectively.
     Finally, the scattering from transmission lines is modeled by dipoles, and the transmission lines arranged with different azimuthal angles are detected using a CFAR method of the coherence of the co-and cross-polarizations estimated by the Hough domain, based on the difference of azimuth symmetry of the transmission line the background clutter. The airborne P-band polarimetric SAR data were used to the test the validity of the method.
引文
[1]保铮,刑孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005:1-5.
    [2]邓云凯,赵凤军,王宇.星载SAR技术的发展趋势及应用浅析[J].雷达学报,2012,1(1):1-10.
    [3]姜景山.中国微波遥感发展的新阶段与新任务.遥感技术与应用[J],2007,22(2):123-128.
    [4]张继贤,黄国满,刘纪平.玉树地震灾情SAR遥感监测与信息服务系统[J].遥感学报,2010,14(05):1038-1052.
    [5]刘俊怡.基于SAR影像的典型线目标提取方法研究[D].武汉:武汉大学,2008.
    [6]F. Tupin, H. Maitre, J. F. Mangin, J. M. Nicolas, E. Pechersky. Detection of linear features in SAR images:application to road network extraction[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(2):434-453.
    [7]张广伟,张永红.基于链码优化的SAR影像城市道路网络提取[J].遥感学报,2008,12(04):620-625.
    [8]Q. Deng, Y. Chen, J. Yang. Joint detection of roads in multifrequency SAR images based on a particle filter[J]. International Journal of Remote Sensing,2010,31(4):1069-1077.
    [9]J.S. Lee, E. Pottier. Polarimetric radar imaging:from basics to applications[M]. Boca Raton: CRC Press,2009:3.
    [10]J.S. Lee, T.L. Ainsworth. An overview of recent advances in Polarimetric SAR information extraction:Algorithms and applications[A].2010 IEEE International Geoscience and Remote Sensing Symposium[C],2010:851-854.
    [11]徐牧.极化SAR图像人造目标提取与几何结构反演研究[D].长沙:国防科技大学,2008.
    [12]程江华.高分辨率SAR图像道路提取方法研究[D].长沙:国防科技大学,2012.
    [13]S. Deng, P. Li, J. Zhang, J. Yang. Power line detection from synthetic aperture radar imagery using coherence of co-polarisation and cross-polarisation estimated in the Hough domain[J]. IET Radar, Sonar, andNavigation,2012,6(9),873-880.
    [14]R. Touzi, A. Lopes. The principle of speckle filtering in polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1110-1114.
    [15]张中山,余洁,燕琴.基于核独立成分分析的极化SAR图像相干斑抑制[J].测绘学报,2011,40(03):289-295.
    [16]J.S. Lee, M.R. Grunes, G.d. Grandi. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(5): 2363-2373.
    [17]G. Vasile, E. Trouve, J.S. Lee, B. Vasile. Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1609-1621.
    [18]J. Chen, Y. Chen, W. An, Y. Cui, J. Yang. Nonlocal Filtering for Polarimetric SAR Data:A Pretest Approach[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(5): 1744-1754.
    [19]J. Gu, J. Yang, H. Zhang,Y. Peng, C. Wang, H. Zhang. Speckle filtering in polarimetric SAR data based on the subspace decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1635-1641.
    [20]陈红艳,付毓生,张睿,皮亦鸣.基于ICA-SCS算法的极化SAR图像相干斑抑制[J].电子与信息学报,2007,29(4):819-821.
    [21]J.S. Lee, M. R. Grimes, D. L. Schuler, E. Pottier, L. Ferro-Famil. Scattering-model-based speckle filtering of polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing,2006,44(1):176-187.
    [22]周晓光.极化SAR图像分类方法研究[D],长沙:国防科技大学,2008.
    [23]R. Fjortoft, A. Lopes, P. Marthon, E. Cubero-Castan. An optimal multiedge detector for SAR image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3): 793-802.
    [24]A. Lopes, R. Fjortoft, D. Ducrot, P. Marthon, C. Lemar6chal. Edge Detection and Segmentation of SAR Images in Homogeneous Regions[A], In:C.H. Chen. Information Processing for Remote Sensing[M], Singapore:World Scientific,1999:1-28.
    [25]A.C. Bovik. On detecting edges in speckle imagery[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1988,36(10):1618-1627.
    [26]赵凌君,贾承丽,匡纲要.SAR图像边缘检测方法综述[J].中国图象图形学报,2007,12(12):2042-2049.
    [27]邓少平,张继贤,李平湘.极化SAR影像边缘检测综述[J].计算机工程与应用,2011,47(22):1-5.
    [28]D. Borghys. Interpretation and registration of high-resolution polarimetric SAR images[D]. Paris:Ecole Nationale Superieure des Telecommunications,2001.
    [29]D. Borghys, V. Lacroix, C. Perneel. Edge and line detection in polarimetric SAR images[A]. In:Proceedings of 16th International Conference on Pattern Recognition[C].2002:921-924.
    [30]J. Schou, S. Henning, A. N. Allan, C. Knut. CFAR edge detector for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):20-32.
    [31]M. Tello Alonso, C. Lopez-Martinez, J. J. Mallorqui, P. Salembier. Edge Enhancement Algorithm Based on the Wavelet Transform for Automatic Edge Detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):222-235.
    [32]G. Zhou, Y. Cui, Y. Chen, J. Yang. Linear Feature Detection in Polarimetric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1453-1463.
    [33]宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-8.
    [34]程江华,关永峰,库锡树,孙即祥.利用双窗口检测和粒子滤波提取高分辨率SAR图像道路中心点[J].电子与信息学报,2012,34(05):1109-1114.
    [35]吴亮,胡云安.遥感图像自动道路提取方法综述[J].自动化学报,2010,36(07):912-922.
    [36]程江华,高贵,库锡树,孙即祥.SAR图像道路网提取方法综述[J].中国图象图形学报,2013,18(1):11-23.
    [37]F. Tupin, B. Houshmand, M. Datcu. Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2405-2414.
    [38]程江华,高贵,库锡树,孙即祥.基于MRF的高分辨率SAR图像道路网自动提取[J].系统工程与电子技术,2012,34(07):1377-1381.
    [39]J. Byoung-Ki, J. Jeong-Hun, H. Ki-Sang. Road detection in spaceborne SAR images using a genetic algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(1): 22-29.
    [40]肖志强,鲍光淑.基于GA的SAR图像中主干道路提取[J].中国图象图形学报,2004,9(01):95-100.
    [41]J.B. Mena, State of the art on automatic road extraction for GIS update:a novel classification[J]. Pattern Recognition Letters,2003,24(16):3037-3058.
    [42]林祥国.高分辨率遥感影像道路半自动追踪方法研究[J].测绘学报,2012,41(04):631.
    [43]张道兵,高分辨率遥感影像中交互式道路提取算法研究[D].西安:中国科学院西安光机所,2007.
    [44]林祥国.高分辨率遥感影像道路半自动追踪方法研究[D].武汉:武汉大学,2009.
    [45]R. Samadani, J.F. Vesecky. Finding Curvilinear Features In Speckled Images[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):669-673.
    [46]L. Bentabet, S. Jodouin, D. Ziou, J. Vaillancourt. Road vectors update using SAR imagery:a snake-based method[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(8): 1785-1803.
    [47]D.M. McKeown, J.L. Denlinger. Cooperative methods for road tracking in aerial imagery[A]. In:1988 Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1988:662-672.
    [48]A. Baumgartner, S. Hinz, C. Wiedemann. Efficient methods and interfaces for road tracking[J]. International Archives of Photogrammetry and Remote Sensing,2002, 34(Part3B):309-312.
    [49]张睿,张继贤,李海涛.基于角度纹理特征及剖面匹配的高分辨率遥感影像带状道路半自动提取[J].遥感学报,2008,12(02):224-232.
    [50]T. Kim, S.R. Park, M.G. Kim, S. Jeong, K.O. Kim. Tracking road centerlines from high resolution remote sensing images by least squares correlation matching[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12):1417-1422.
    [51]J. Zhou, W.F. Bischof, T. Caelli. Road tracking in aerial images based on human-computer interaction and Bayesian filtering[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(2):108-124.
    [52]J. Hu, A. Razdan, J. C. Femiani, M. Cui, P. Wonka. Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4144-4157.
    [53]D. Haverkamp, Extracting straight road structure in urban environments using IKONOS satellite imagery[J]. Optical Engineering,2002,41(9):2107-2110.
    [54]Q. Zhang, I. Couloigner. Benefit of the angular texture signature for the separation of parking lots and roads on high resolution multi-spectral imagery[J]. Pattern Recognition Letters,2006,27(9):937-946.
    [55]X. Jin, C.H. Davis. An integrated system for automatic road mapping from high-resolution multi-spectral satellite imagery by information fusion[J]. Information Fusion,2005,6(4): 257-273.
    [56]J. Zhou. A Human-Computer Interaction Framework for Image Interpretation in Cartographic Map Revision[D]. Alberta of Canada:University of Alberta:2006.
    [57]F. Dell'Acqua, P. Gamba. Detection of Urban Structures in SAR Images by Robust Fuzzy Clustering Algorithms:The Example of Street Tracking[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(10):2287-2297.
    [58]肖志强.SAR图像中道路网络提取及GIS空间数据更新方法研究[D].长沙:中南大学,2004.
    [59]Y. Wang, Q. Zheng. Recognition of roads and bridges in SAR images[J]. pattern recognition, 1998,31(7):953-962.
    [60]W. Chen, C. Wang, H. Zhang. Road network extraction in high resolution SAR images[A]. In:2004 IEEE International Geoscience and Remote Sensing Symposium[C].2004: 3806-3809.
    [61]G.Vosselman, J.d. Knecht. Road tracing by profile matching and Kalman filtering[A]. In:A. Gruen,O. Kuebler, P. Agouris. Automatic Extraction of Man-Made Objects from Aerial and Space Images[M]. Basel, Switzerland:Birkhauser Verlag,1995:265-274.
    [62]S. Movaghati, A. Moghaddamjoo, A. Tavakoli. Road Extraction From Satellite Images Using Particle Filtering and Extended Kalman Filtering[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(7):2807-2817.
    [63]郦苏丹,张翠,王正志.SAR图像中道路检测力法研究[J].宇航学报,2002,23(01):17-24.
    [64]C. He, Z. Liao, F. Yang, X. Deng, M. Liao. Road Extraction From SAR Imagery Based on Multiscale Geometric Analysis of Detector Responses[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(5):1373-1382.
    [65]X. Lin, R. Zhang, J. Shen. A template-matching based approach for extraction of roads from very high-resolution remotely sensed imagery[J]. International Journal of Image and Data Fusion,2012,3(2):149-168.
    [66]林祥国,张继贤,李海涛,杨景辉.基于T型模板匹配半自动提取高分辨率遥感影像带状道路[J].武汉大学学报(信息科学版),2009,34(03):293-296.
    [67]J.Zhang, X. Lin, Z. Liu, J. Shen. Semi-automatic road tracking by template matching and distance transformation in urban areas[J]. International Journal of Remote Sensing,2011, 32(23):8331-8347.
    [68]J. Cheng, W. Ding, X. Ku, J. Sun. Road Extraction from High-Resolution SAR Images via Automatic Local Detecting and Human-Guided Global Tracking[J]. International Journal of Antennas and Propagation,2012,12(1):1-10.
    [69]F. Ye, L. Su, J. Tang. Automatic Road Extraction Using Particle Filters from High Resolution Images.中国矿业大学学报(英文版),2006,16(4):490-493.
    [70]刘艳.高分辨率SAR图像输电线路及铁塔监测技术研究[D],武汉:武汉大学,2009.
    [71]C. Mu, Q. Yan, Y. Feng, J. Cai, J. Yu. Overview of powerlines extraction and surveillance using remote sensing technology[A]. In:MIPPR 2009:Remote Sensing and GIS Data Processing and Other Applications[C]. Yichang, China:SPIE,2009:74981M1-74981M8.
    [72]R.A. McLaughlin. Extracting transmission lines from airborne LIDAR data[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(2):222-226.
    [73]G. Yan, C. Li, G. Zhou, W. Zhang, X. Li. Automatic Extraction of Power Lines From Aerial Images[J]. IEEE Geoscience and Remote Sensing Letters,2007,4(3):387-391.
    [74]李朝阳,阎广建,肖志强,李小文.高分辨率航空影像中高压输电线的自动提取[J].中国图象图形学报,2007,12(06):1041-1047.
    [75]K. Yamamoto, K. Yamada. Analysis of the infrared images to detect power lines[A]. In: IEEE Region 10 Annual Conference on Speech and Image Technologies for Computing and Telecommunications[C].1997:343-346.
    [76]C. Sun, R. Jones, H. Talbot, X. Wu, C. Kevin. Measuring the distance of vegetation from powerlines using stereo vision[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60(4):269-283.
    [77]Z.R. Li, Y. Liu, R. Walker, R. Hayward, J. L. Zhang. Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform[J]. Machine Vision and Applications,2010,21(5):677-686.
    [78]M. Park. Millimeter-Wave Polarimetric Radar Sensor for Detection of Power Lines in Strong Clutter Background[D]. Michigan:The University of Michigan:2003.
    [79]Q. Ma, D. Goshi, Y. Shi, M. Sun. An Algorithm for Power Line Detection and Warning Based on a Millimeter-Wave Radar Video[J]. IEEE Transactions on Image Processing,2011, 20(12):3534-3543.
    [80]J. Zhang, Z. Zhao, G. Huang, Z. Lu. CASMSAR:An Integrated airborne SAR mapping system[J]. Photogrammetric Engineering & Remote Sensing,2012,2012,12(12):1111-1115.
    [81]刘艳,刘经南,李陶,夏耶.利用高分辨率SAR卫星监测灾害条件下电网铁塔形变[J].武汉大学学报(信息科学版),2009,34(11):1354-1359.
    [82]W.Yang, G. Xu, J. Chen, H. Sun. Power Transmission Towers Extraction in Polarimetric SAR Imagery Based on Genetic Algorithm[A], In:D.S. Huang, K. Li, G. Irwin. Intelligent Computing in Signal Processing and Pattern Recognition[C]. Berlin:Springer, 2006:410-420.
    [83]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000:167-178.
    [84]贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报,2005,10(2): 135-141.
    [85]K. Yoong, T. Bretschneider. POLSAR speckle filtering with structural feature and scattering property preservation[A]. In:2005 IEEE International Geoscience and Remote Sensing Symposium[C].2005:332-335.
    [86]A.Lopes, R. Touzi, E. Nezry. Adaptive speckle filters and scene heterogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(6):992-1000.
    [87]J.S.Lee, J. Wen, T. L. Ainsworth, K. Chen, A. J. Chen. Improved Sigma Filter for Speckle Filtering of SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2009, 47(1):202-213.
    [88]L.M. Novak, M.C. Burl, W.W. Irving. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Eletronic Systems,1993.29(1):234-244.
    [89]G. Liu, S. Huang, A. Torre, F. Rubertone. The Multilook Polarimetric Whitening Filter (MPWF) for Intensity Speckle Reduction in Polarimetric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):1016-1020.
    [90]刘秀清,杨震,杨汝良.全极化合成孔径雷达图像极化白化滤波参数估计方法的改进研究[J].电子学报,2003,31(12):1795-1799.
    [91]J.S. Lee, M.R. Grimes, S.A. Mango. Speckle Reduction in Multipolarization, Multifrequency SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991,29(4):535-544.
    [92]A. Lopes, S. Goze, E. Nezry. Polarimetric Speckle Filters For SAR Data[A], In IGARSS[C].1992:80-82.
    [93]S.H. Yoon, Y.S. Kim. Classified pixel-based windowing algorithm for polarimetric SAR speckle filtering[J]. ELECTRONICS LETTERS,2003,391(1):115-116.
    [94]郭睿,刘艳阳,臧博,邢孟道.一种保持散射特性的极化SAR图像滤波方法[J].西安电子科技大学学报(自然科学版),2011,38(1):90-95.
    [95]R. Jeansoulin, Y. Fontaine, W. Frei. Multitemporal segmentation by means of fuzzy sets[A]. In:the 7th International Symposium on Machine processing of remotely sensed data[C]. 1981:336-339.
    [96]A. Freeman, S.L. Durden. A Three-Component Scattering Model for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.
    [97]周晓光,匡纲要,万建伟.多极化SAR图像斑点抑制综述[J].中国图象图形学报,2008,13(3):377-385.
    [98]S.N. Anfinsen, A.P. Doulgeris, T. Eltoft. Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3795-3809.
    [99]C. Niu, G. Zhang, J. Zhu, S. Liu, D. Ma. Correlation Coefficients Between Polarization Signatures for Evaluating Polarimetric Information Preservation[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(6):1016-1020.
    [100]J.S. Lee, G. De Grandi, M. R. Grunes, E. Nezry. Polarimetric signature preservation in SAR speckle filtering[A]. In:IGARSS1996[C].1996:1574-1576.
    [101]C.Oliver, S. Quegan. Understanding synthetic aperture radar images[M]. London:Artech House,1998:184-186.
    [102]D. Marr, E. Hildreth. Theory of Edge Detection[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences,1980,207(1167):187-217.
    [103]R. Touzi, A. Lopes, P. Bousquet. Statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing,1988,26(6):764-773.
    [104]C.J. Oliver, D. Blacknell, R.G. White. Optimum edge detection in SAR[J]. IEE Proceedings-Radar, Sonar and Navigation,1996,143(1):31-40.
    [105]G.E.P. BOX, A general ditribution theory for a class of likelihood critiear[J]. Biometrika, 1949,36(3):317-346.
    [106]K, Conradsen, A. N. Allan, J, Schou, S. Henning. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):4-19.
    [107]P. Formont, F. Pascal, G. Vasile, J. P. Ovarlez, L. Ferro-Famil. Statistical Classification for Heterogeneous Polarimetric SAR Images[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5(3):567-576.
    [108]A.C. Frery, A.H. Correia, C.d. da Freitas. Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3098-3109.
    [109]A. A. SWARTZ, H. A. YUEH, J. A. KONG, L. M. NOVAK, R. T. SHIN. Optimal Polarizations for Achieving Maximum Contrast in Radar Images[J]. JOURNAL OF GEOPHYSICAL RESEARCH,1988,93(B12):252-260.
    [110]邓少平,张继贤,李平湘,黄国满.改进极化白化滤波的边缘检测[J].中国图象图形学报,2012,17(5):665-670.
    [111]J.S. Lee, M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler, S. R. Cloude. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258.
    [112]J.S. Le, M.R. Grunes. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing,1994,15(11): 2299-2311.
    [113]I. Melgar, J. Fombellida, J. Gomez, J. Seijas. Edge detection algorithms in intensity SAR images:Empirical comparison of performances and proposed improvements[A]. In:2008 Automation Congress[C].2008:
    [114]T. Fawcett, An introduction to ROC analysis[J]. Pattern Recognition Letters,2006, 27(2006):861-874.
    [115]李平湘,邓少平,张继贤,杨杰.利用自适应最优极化对比增强检测SAR影像边缘[J].武汉大学学报(信息科学版),2012,37(07):789-793.
    [116]H. Skriver, J. Schou, A. A. Nielsen, K. Conradsen. Polarimetric edge detector based on the complex Wishart distribution[A], In:IGARSS2001[C].2001:3149-3151.
    [117]L.K. Yoong. Polarimetric synthetic aperture radar image processing for land cover classfication[D]. Singapore:Nanyang Technological University:2009.
    [118]Y. Yu, S.T. Acton, Automated delineation of coastline from polarimetric SAR imagery[J]. International Journal of Remote Sensing,2004,25(17):3423-3438.
    [119]Y. Wang, F. Tupin, C. Han, J. M. Nicolas. Building Detection from High Resolution PolSAR Data by combining Region and Edge Information[A]. In:IEEE International Geoscience and Remote Sensing Symposium[C],2008:
    [120]S.N. Roy. On a Heuristic Method of Test Construction and its use in Multivariate Analysis[J]. The Annals of Mathematical Statistics,1953,24(2):220-238.
    [121]S.S. Chu, K.C.S. Pillai. Some complex variable transformations and exact power comparisons of two-sided tests of equality of two Hermitian covariance matrices[J]. Journal of Statistical Planning and Inference,1980,4(3):267--290.
    [122]X. Huang, L. Zhang. Road centreline extraction from high-resolution imagery based on multiscale structural features and support vector machines[J]. International Journal of Remote Sensing,2009,30(8):1977-1987.
    [123]M. Song, D. Civco. Road extraction using SVM and image segmentation[J]. Photogrammetric Engineering & Remote Sensing,2004,70(12):1365-1371.
    [124]D.S. Boyd, C. Sanchez-Hernandez, G.M. Foody. Mapping a specific class for priority habitats monitoring from satellite sensor data[J]. International Journal of Remote Sensing, 2006,27(13):2631-2644.
    [125]G.M. Foody. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment,2002,80(2002):185-201.
    [126]G.M. Foody, A. Mathur, C. Sanchez-Hernandez, D.S. Boyd. Training set size requirements for the classification of a specific class[J]. Remote Sensing of Environment,2006, 104(2006):1-14.
    [127]潘志松,陈斌,缪志敏,倪桂强One-Class分类器研究[J].电子学报,2009,37(11):2496-2503.
    [128]D.M.J. Tax, One-class classification[D]. The Netherlands:Delft University of Technology, 2001.
    [129]G. Gao. A Parzen-Window-Kernel-Based CFAR Algorithm for Ship Detection in SAR Images[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(3):557-561.
    [130]梅天灿,李德仁,秦前清.基于直线和区域特征的遥感影像线状目标检测[J].武汉大学学报(信息科学版),2005,30(08):689-693.
    [131]S. Zheng, J. Liu, W. Shi, G. Zhu. An automatic road segmentation algorithm using one-class SVM[A]. In:Geoinformatics 2006:Remotely Sensed Data and Information[C]. Wuhan of China:SPIE,2006:64191B1-64191B9.
    [132]V. Vapnik. The nature of statistical learning theory[M]. NewYork:Springer-Verlag, 1995:1-38.
    [133]D.M.J. Tax, R.P.W. Duin. Support vector domain description[J]. Pattern Recognition Letters, 1999,20(1999):1191-1199.
    [134]D.M.J. Tax, R.P.W. Duin. Support Vector Data Description[J]. Machine Learning,2004, 54(1):45-66.
    [135]胡文军,王士同SVDD的快速实时决策方法[J].自动化学报,2011,37(09):1085-1094.
    [136]赵峰,张军英,刘敬.一种改善支撑向量域描述性能的核优化算法[J].自动化学报,2008,34(09):1122-1127.
    [137]张学工,关于统计学习理论与支持向量机[J].自动化学报,2000,26(01):36-46.
    [138]G. Zhu, D.G. Blumberg. Classification using ASTER data and SVM algorithms:The case study of Beer Sheva, Israel[J]. Remote Sensing of Environment,2002,80(2):233-240.
    [139]M. Pal, P.M. Mather. Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing,2005,26(5):1007-1011.
    [140]G. Mountrakis, J. Im, C. Ogole. Support vector machines in remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(3):247-259.
    [141]G.M. Foody, A. Mathur. The use of small training sets containing mixed pixels for accurate hard image classification:Training on mixed spectral responses for classification by a SVM[J]. Remote Sensing of Environment,2006,103(2):179-189.
    [142]S. Fukuda, H. Hirosawa. Support Vector Machine Classification of Land Cover Application to Polarimetric SAR Data[A]. In:IGARSS2001[C].2001:187-189.
    [143]吴永辉,计科峰,李禹,郁文贤.利用SVM的极化SAR图像特征选择与分类[J].电子与信息学报,2008,30(10):2347-2351.
    [144]吴永辉,计科峰,郁文贤.利用SVM的全极化、双极化与单极化SAR图像分类性能的比较[J].遥感学报,2008,12(1):46-53.
    [145]Y. Wang, J. Lu, X. Wu. New algorithm of target classification in polarimetric SAR[J]. Journal of Systems Engineering and Electronics,2008,19(2):273-279.
    [146]C.Lardeux, P.L. Frison, C. Tison, J.C. Souyris, B. Stoll. Support Vector Machine for Multifrequency SAR Polarimetric Data Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):4143-4152.
    [147]L. Zhang, B. Zou, J. Zhang, Y. Zhang. Classification of Polarimetric SAR Image Based on Support Vector Machine Using Multiple-Component Scattering Model and Texture Features[J]. EURASIP Journal on Advances in Signal Processing,2010,2010(960831):1-9.
    [148]R. Shah Hosseini, I. Entezari, S. Homayouni, M. Motagh, B. Mansouri. Classification of polarimetric SAR images using Support Vector Machines[J]. Canadian Journal of Remote Sensing,2011,37(2):220-233.
    [149]L. Huang, Z. Li, B. S. Tian, Q. Chen, J. L. Liu, R. Zhang. Classification and snow line detection for glacial areas using the polarimetric SAR image[J]. Remote Sensing of Environment,2011,115(7):1721-1732.
    [150]Z. Zhu, C. E. Woodcock, J. Rogan, J. Kellndorfer. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data[J]. Remote Sensing of Environment,2012,117:72-82.
    [151]J. Munoz-Marf, L. Bruzzone, G. Camps-Vails. A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2683-2692.
    [152]C. Sanchez-Hernandez, D.S. Boyd, G.M. Foody. One-Class Classification for Mapping a Specific Land-Cover Class:SVDD Classification of Fenland[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):1061-1073.
    [153]A. Banerjee, P. Burlina, C. Diehl. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2006, 44(8):2282-2291.
    [154]S. Khazai, S. Homayouni, A. Safari, B.Mojaradi. Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(4):646-650.
    [155]G. Camps-Valls, G.C. Luis, M.M. Jordi, R.A. Jose Luis, M.R. Manel. Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6): 1822-1835.
    [156]F. Bovolo, G. Camps-Valls, L. Bruzzone. A support vector domain method for change detection in multitemporal images[J]. Pattern Recognition Letters,2010,31(10):1148-1154.
    [157]A. Belghith, C. Collet, J.P. Armspach. Change detection based on a support vector data description that treats dependency[J]. Pattern Recognition Letters,2013,34(3):275-282.
    [158]D. Lee, J. Lee. Domain described support vector classifier for multi-classification problems. pattern recognition,2007,40(1):41-51.
    [159]T. Mu, A.K. Nandi. Multiclass Classification Based on Extended Support Vector Data Description[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009,39(5):1206-1216.
    [160]刘志刚.支撑向量机在光谱遥感影像分类中的若干问题研究[D].武汉:武汉大学,2004.
    [161]A. Gambardella, G. Giacinto, M. Migliaccio, A. Montali. One-class classification for oil spill detection[J]. Pattern Analysis and Applications,2010,13(3):349-366.
    [162]X. Zhang, J. Song, Z. Yi, R. Wang. Unsupervised SAR Imagery Segmentation Based on SVDD[A], In:D. Jin, S. Lin. Advances in Multimedia, Software Engineering and Computing Vol.1[C]. Berlin Heidelberg:Springer,2012:25-31.
    [163]冯国瑜,肖怀铁,付强,关卿.基于ISVDD的雷达高分辨距离像在线识别方法[J].系统工程与电子技术,2012,34(03):489-494.
    [164]冯国瑜,肖怀铁,付强,黄孟俊.基于自适应SVDD的雷达目标分类方法.系统工程与电子技术[J],2011,33(02):253-258.
    [165]郭雷,肖怀铁,付强.基于核主分量分析和支持矢量数据描述的雷达目标模糊识别方法[J].信号处理,2009,25(1):63-68.
    [166]郭雷.宽带雷达目标极化特征提取与核方法识别研究[D].长沙:国防科学技术大学,2009.
    [167]沈明华.散射中心分布特征提取与核方法分类器关键技术研究[D].长沙:国防科技大学,2008.
    [168]R. Zhang, X. Lin. Automatic road extraction based on local histogram and support vector data description classifier from very high resolution digital aerial[A]. In:IEEE International Geoscience and Remote Sensing Symposium[C].2010:441-444.
    [169]陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(08):1325-1332.
    [170]朱孝开,杨德贵.基于推广能力测度的多类SVDD模式识别方法[J].电子学报,2009,37(03):464-469.
    [171]X. Wang, F.L. Chung, S. Wang. Theoretical analysis for solution of support vector data description [J]. Neural Networks,2011,24(4):360-369.
    [172]G. Huang, H. Chen, Z. Zhou, F. Yin, K. Guo. Two-class support vector data description. pattern recognition[J],2011,44(2):320-329.
    [173]冯国瑜,肖怀铁,付强,任国磊.一种适于在线学习的增量支持向量数据描述方法[J].信号处理,2012,28(02):186-192.
    [174]V.N. Vapnik. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [175]B.E. Boser, I.M. Guyon, V.N. Vapnik. A training algorithm for optimal margin classifiers[A]. In:Proceedings of the fifth annual workshop on Computational learning theory1992[C]. Pennsylvania:ACM,1992:144-152.
    [176]X. Niu, Y. Ban. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach[J]. International Journal of Remote Sensing,2013,34(1):1-26.
    [177]S. Fukuda, H. Hirosawa. Polarimetric SAR Image Classification Using Support Vector Machines[J]. IEICE TRANSACTIONS on Electronics,2001, E84-C(12):1939-1945.
    [178]Y. Wang, J. Lu, C. Zhang. Algorithm of target classification based on target decomposition and support vector machine[A]. In:APSAR 2007[C].2007:770-774.
    [179]汪洋,鲁加国,张长耀.基于Krogager分解和SVM的极化SAR图像分类[J].遥感技术与应用,2007,22(1):70-74.
    [180]吴永辉,计科峰,郁文贤.SVM全极化SAR图像分类中的特征选择[J].信号处理,2007, 23(6):877-881.
    [181]C. Lardeux, P.L. Frison, J.P. Rudant, J.C. Souyris, C. Tison, B. Stoll. Use of the SVM Classification with Polarimetric SAR Data for Land Use Cartography. In:IGARSS2006[C]. 2006:497-500.
    [182]F. Mattia, T. L. Toan, J.C. Souyris, G. D. Carolis, N. Floury, F. Posa, G. Pasquariello. The Effect of Surface Roughness on Multifrequency Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):954-966.
    [183]H.T. Li, H.Y. Gu,Y. S. Han, J. H. Yang. Object-oriented Classification of Polarimetric SAR Imagery based on Statistical Region Merging and Support Vector Machine[A], In: International Workshop on Earth Observation and Remote Sensing Applications[C].2008: 147-152.
    [184]S. Daniel, A.B. Sophie, A. S6bastien, D.F. Pascale, E. Pottier. Agricultural vegetation classification with SVM and polarimetric SAR data[A]. In:Remote Sensing for Agriculture, Ecosystems, and Hydrology XII[C].Toulouse, France:SPIE,2010:78240L1-78240L7.
    [185]M. Shimoni, D. Borghys, R. Heremans, C. Perneel, M. Acheroy. Fusion of PolSAR and PolInSAR data for land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation,2009,11(2009):169-180.
    [186]V.A.G. Satalino, D.K. Staykova. Comparison of polarimetric SAR observables in terms of classification performance[J]. International Journal of Remote Sensing,2008,29(14): 4129-4150.
    [187]V. Alberga. A study of land cover classification using polarimetric SAR parameters[J]. International Journal of Remote Sensing,2007,28(17):3851-3870.
    [188]F. Cao, W. Hong, Y. Wu, E. Pottier. An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/a/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3454-3467.
    [189]M. Hellmann. A New Approach for Interpretation of SAR-Data using Polarimetric Techniques[A]. In:IGARSS1998[C].1998:2195-2197.
    [190]H. Skriver, M.T. Svendsen, A.G. Thomsen. Multitemporal C-and L-band polarimetric signatures of crops[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(5): 2413-2429.
    [191]H. Skriver, J. Dall, T. Le Toan, S. Quegan, L. Ferro-Famil, E. Pottier. Agriculture classification using PolSAR data[A], In:PolInSAR2005[C]:1-6.
    [192]P. Li, L. Shi, J. Yang, L. Lu. Assessment of Polarimetric and Interferometric Image Quality for Chinese Domestic X-Band Airborne SAR System[A]. In:2011 International Symposium on Image and Data Fusion[C]. TengChong, Yunnan:IEEE,2011:359-366.
    [193]O. Cappe, S.J. Godsill, E. Moulines. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo[J]. Proceedings of the IEEE,2007,95(5):899-924.
    [194]姚剑敏.粒子滤波跟踪方法研究[D].长春:中国科学院长春光机所,2005.
    [195]M. Isard, A. Blake. CONDENSATION —Conditional Density Propagation for Visual Tracking[j]. International Journal of Computer Vision,1998,29(1):5-28.
    [196]G. Kravaritis, B. Mulgrew. Variable-mass particle filter for road-constrained vehicle tracking[j]. EURASIP Journal of Advanced Signal Process,2008,2008(321967):1-13.
    [197]焦雅林,高社生,薛丽.GPS/DR车辆组合导航改进的粒子滤波算法研究[J].西北工业大学学报,2011,29(01):39-43.
    [198]F. Gustafsson, Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Magazine,2010,25(7):53-82.
    [199]R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems[J]. Transaction of the ASME—Journal of Basic Engineering,1960,82(D):35-45.
    [200]H.W. Sorenson, Least-squares estimation:from Gauss to Kalman[J]. IEEE Spectrum,1970, 7(7):63-68.
    [201]M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002, 50(2):174-188.
    [202]J.M. Hammersley, K.W. Morton. Poor Man's Monte Carlo[J]. Journal of the Royal Statistical Society. Series B (Methodological),1954,16(1):23-38.
    [203]N.J. Gordon, D.J. Salmond, A.F.M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceedings F, Radar and Signal Processing,1993. 140(2):107-113.
    [204]J. Vermaak, S.J. Godsill, and P. Perez. Monte Carlo filtering for multi target tracking and data association[J]. IEEE Transactions on Aerospace and Electronic Systems,2005.41(1): 309-332.
    [205]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(04):361-365.
    [206]A. Doucet, A.M. Johansen. A tutorial on particle filtering and smoothing:fifteen years later[A]. In:D.Crisan, B.Rozovsky. Handbook of Nonlinear Filtering[M]. Cambridge: Cambridge University Press,2009:1-39.
    [207]A. Doucet, S. Godsill, C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [208]M.K. Pitt, N. Shephard. Filtering via Simulation:Auxiliary Particle Filters[J]. Journal of the American Statistical Association,1999,94(446):590-599.
    [209]T. Higuchi, Monte carlo filter using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation,1997,59(1):1-23.
    [210]Y. Chen, Y. Gu, J. Gu, J. Yang. Particle filter based road detection in SAR image[A]. In: IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications[C].2005:301-305.
    [211]J. Liu, D. Li, H. Sui, X. Mei. Road extraction from SAR images based on particle filtering[A]. In:T. Zhang, C. Nardell, D. Smith. SPIE Fifth International Symposium on Multispectral Image Processing and Pattern Recognition [C]. Wuhan:SPIE,2007: 67862G1-67862G8.
    [212]Q. Deng, L. Gao, and J. Yang. Particle filter based approach to road detection in multiband SAR images[A]. In:2nd Asian-Pacific Conference on Synthetic Aperture Radar[C].2009: 684-688.
    [213]穆超.基于多种遥感数据的输电线走廊特征物提取方法研究[D].武汉:武汉大学,2010.
    [214]张瑞,魏玺章.毫米波段高压线电磁散射特性分析[J].现代雷达,2009,31(02):25-28.
    [215]K. Sarabandi, L. Pierce, Y. Oh, F. T. Ulaby. Power lines:radar measurements and detection algorithm for polarimetric SAR images[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(2):632-643.
    [216]J.S. Lee, T.L. Ainsworth. The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):53-64.
    [217]Q. Chen, Y.M Jiang, L.J. Zhao, G. Gao, G.Y. Kuang. An Optimization Procedure of the Lagrange Multiplier Method for Polarimetric Power Optimization[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):699-702.
    [218]L. Tsang, K.H. Ding. Polarimetric signatures of a layer of random nonspherical discrete scatterers overlying a homogeneous half-space based on first-and second-order vector radiative transfer theory[J]. IEEE Tran. on Geo. and Re. Sens.,1991,29(2):242-253.
    [219]M. Shimada. Model-Based Polarimetric SAR Calibration Method Using Forest and Surface-Scattering Targets[J]. IEEE Tran. on Geo. and Re. Sens.,2011,49(5):1712-1733.
    [220]R. Touzi, A. Lopes. Statistics of the Stokes Parameters and of the Complex Coherence Parameters in One-Look and Multilook Speckle Fields[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):519-531.
    [221]N. Aggarwal, W.C. Karl. Line detection in images through regularized hough transform[J]. IEEE Transactions on Image Processing,2006,15(3):582-591.
    [222]W. Yang, H. Zhang, J. Chen, H. Sun. Automatic Detection of Power Transmission Series in Full Polarimetric SAR Imagery[A]. In:2007 IEEE Radar Conference[C].2007:789-793.
    [223]J. Cheng, T. Jin, X. Ku, J. Sun. Road junction extraction in high resolution SAR images via morphological detection and shape identification[J]. Remote Sensing Letters,2013,4(3): 296-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700