用户名: 密码: 验证码:
计算光谱成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为近年来刚刚提出的一种新型光谱成像技术,计算光谱成像技术在传统色散型光谱成像技术的基础上,通过在光路中引入适当的编码模板完成目标数据立方体的调制和压缩,然后采用压缩感知理论对探测器获取的二维混叠图像进行三维图谱信息重构,实现了景物空间信息与光谱信息的快照式成像,弥补了传统光谱成像技术光通量低、逐行扫描成像时间长等缺点,极大降低了原始数据量,减轻了数据存储和传输压力。本文对计算光谱成像技术进行了系统性的研究,主要内容包括:
     1.归纳总结了传统光谱成像技术的分类、应用及其遇到的瓶颈,介绍了计算光谱成像技术的研究现状。
     2.介绍了压缩感知和计算光谱成像技术的基本理论,建立了计算光谱成像系统的数学模型,并对数据反演的关键技术进行了比较分析。
     3.分析了编码模板函数和色散元价的选取,对计算光谱成像系统成像链路中各种误差影响因子进行了仿真分析,着重分析了谱线弯曲和谱带弯曲对系统的影响。
     4.对计算光谱成像系统提出合理的成像质量评价方法。结合计算光谱成像技术原理和压缩感知重构理论,利用斜边检测技术计算靶标重构图像调制传递函数,并考虑复原光谱的失真度,在此基础上定义了成像质量的评价因子,定量分析了混叠谱段数对系统成像质量的影响。
     5.设计研制了计算光谱成像仪实验装置。对系统开展了定标,并进行了成像实验,通过图谱重构,实现了数据立方体的快照式获取。
     6.介绍了一种分段连续编码的计算光谱成像技术。利用一次像面分割法将计算光谱成像系统的一次像面分为多个连续的子波段区域,并通过扫描方式获取完整数据立方体的稀疏采样,通过计算机仿真发现重构精度明显提高。
Recently, a novel imaging spectrometry called computational imaging spectrometry has been proposed. Based on the conventional dispersive imaging spectrometry, a coded mask which modulates and compresses the3D spatial-spectral data-cube about the scene is imported appropriately in the light path. The3D spatial-spectral information about a scene of interest is first encoded and captured with one snapshot at the two-dimensional (2D) detector array. Compressed sensing (CS) theory is then used to reconstruct the3D data-cube from the2D aliasing image. Compared to the conventional imaging spectrometry, computational imaging spectrometry eliminates the disadvantages of low light throughput and temporal scanning, greatly reduces the amount of original data, and alleviates the pressure of the data storage and transmission. Systematic study of computational imaging spectrometry is carried out in this paper, and the main work is included as follows:
     Firstly, the classification, applications and bottleneck of conventional imaging spectrometers are summarized. The development of computational imaging spectrometry is described.
     Secondly, the basic theory of compressive sensing and computational imaging spectrometry is introduced and the mathematic model of computational imaging spectrometry is established. The key technology of data inversion is analyzed comparatively.
     Thirdly, the selection of coded mask and dispersive element is introduced. Several kinds of errors are simulated in the imaging chain of computational imaging spectrometry, and the effect of smile and key-stone aberration of the prism on the system is emphatically analyzed.
     Fourthly, imaging quality evaluation method of computational imaging spectrometry is proposed. Combined with the principle of computational imaging spectrometry and compressive sensing theory, the slated-edge method is used to calculate the modulation transfer function (MTF) of the reconstructed chart image and the distortion of the recovered spectrum is considered. Then evaluation factor is defined, and the aliasing spectral number, which affects imaging quality of the system, is quantitatively analyzed.
     Fifthly, the experimental device is designed and fabricated. The calibration of the system and imaging experiment are carried out. Through spatial-spectral information reconstruction, the capture of data-cube from a snapshot is achieved.
     Lastly, a so-called piecewise continuous coding computational imaging spectrometry is described. The first image plane of computational imaging spectrometer is segmented into several continuous spectral sub-band areas. The sparse sampling of the entire spatial-spectral image could be acquired by scanning. The simulation shows the reconstruction accuracy is significantly improved.
引文
[1]Alexander F. H. Goetz, Gregg Vane, Jerry E. Solomon, et al. Imaging Spectrometry for Earth Remote Sensing. Science,1985,228(4704):1147-1153.
    [2]Joe W. Boardman. Inversion of Imaging Spectrometry Data Using Singular Value Decomposition. Proceedings 12th Canadian Symposium on Remote Sensing,1989,4: 2069-2072.
    [3]Roger N. Clark, Trude V. V. King, Matthew Klejwa, et al. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal of Geophysical Research,1990,95(B8): 12653-12680.
    [4]Paul J. Curran. Imaging Spectrometry. Progress in Physical Geography,1994,18(2): 247-266.
    [5]http://landsat.gsfc.nasa.gov/about/landsat7.html.
    [6]Introduction to ASTER GDS. http://www.nik.com.tr/content/sistem/intro_aster_partl.pdf.
    [7]Wallace M. Porter, Thomas G. Chrien, Earl G. Hansen, et al. Evolution of the Airborne Visible/Infrared Imaging Spectrometer Flight and Ground Data Processing System. Porc. of SPIE,1990,1298:11-17.
    [8]Steven A. Macenka, Michael P. Chrisp. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Spectrometer Design and Performance. Proc. of SPIE,1987,834:32-43.
    [9]Robert O. Green, M. L. Eastwor, C. M. Sarture, et al. Imaging Spectroscopy and the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of the Environment,1998, 65(3):227-248.
    [10]James A. Stobie, Allen Hairston, Stephen P. Tobin, et al. Imaging Sensor for the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS). Proc. of SPIE,2002, 4818:213-218.
    [11]Fred A. Best, Henry E. Revercomb, Robert O. Knuteson, et al. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) On-board Blackbody Calibration System. Proc. of SPIE,2005,5655:77-87.
    [12]J. D. Elwelll, G. W. Cantwell, D. K. Scott, et al. A Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) for Hyperspectral Atmospheric Remote Sensing: Instrument Overview & Preliminary Performance Results. Proc. of SPIE,2006,62970S1-12.
    [13]Michael E. Schaepman, Klaus I. Itten, Daniel Schlapfer, et al. APEX:Current Status of the Airborne Dispersive Pushbroom Imaging Spectrometer. Sensors, Systems, and Next-Generation Satellites Ⅶ, Proc. of SPIE,2004,5234:202-210.
    [14]Peter A. Mitchell. Hyperspectral Digital Imagery Collection Experiment (HYDICE). Proc. of SPIE,1995,2587:70-95.
    [15]Mark Folkman, Jay Pearlman, Lushalan Liao, et al. EO-1/Hyperion Hyperspectral Imager Design, Development, Characterization, and Calibration. Proc. of SPIE,2001,4151:40-51.
    [16]Gary Holick. Introduction to Fourier Transform Spectrosopy. Applied Spectroscopy,1968, 22(6):617-626.
    [17]Robert John Bell. Introductory Fourier Transform Spectrosopy. Academic Press, New York, 1972.
    [18]相里斌.干涉成像光谱技术研究,博士后研究工作总结报告.西北大学现代物理研究所、中国科学院西安光机所,1995年8月一1997年8月.
    [19]付强,黄曼,景娟娟,等.用于液晶可调谐滤光片型多光谱成像仪的中继成像系统设计.光学学报,2011,31(10):1022002-1-6.
    [20]Nahum Gata, Suresh Subramaniana, Steve Rossa, et al. Thermal Infrared Imaging Spectrometer (THRIS) Status Report. Proc. of SPIE,1997,3061:284-291.
    [21]Craig R. Schwartz, Michael T. Eismann, Jack N. Cederquist, et al. Thermal Multispectral Detection of Military Vehicles in Vegetated and Desert Backgrounds. Proc. of SPIE,1996, 2742:289-297.
    [22]Miles Q. Topping, Joel E. Pfeiffer, Andrew W. Sparks, et al. Advanced Airborne Hyperspectral Imaging System (AAHIS). Proc. of SPIE,2002,4816:1-11.
    [23]Alan D. Stocker, Ara Oshagan, William A. Shaffer, et al. Analysis of Infrared Hyperspectral Measurements by the Joint Multispectral Program. Proc. of SPIE,1995,2649:587-602.
    [24]J. G. P. W. Clevers. The Use of Imaging Spectrometry for Agricultural Applications. Journal of Photogrammetry and Remote Sensing,1999,54(5):299-304.
    [25]Safwat H. Shakir Hanna, Michael D. Rethwisch. Characteristics of AVIRIS Bands Measurements in Agricultural Crops at Blythe Area, California:Ⅳ. Studies on Cotton Varieties Spectral Data. Proc. of SPIE,2004,5232:52-82.
    [26]Glenn J. Fitzgerald. Portable Hyperspectral Tunable Imaging System (PHYTIS) for Precision Agriculture. Agronomy Journal,2004,96(1):311-315.
    [27]Catherine Champagne, Jiali Shanga, Heather McNairna, et al. Exploiting Spectral Variation from Crop Phenology for Agricultural Land-Use Classification. Proc. of SPIE,2005, 588405-1-9.
    [28]Douglas R. Olsen. Multi-Spectral Remote Sensing Applications for Agriculture.2012 Unmanned Aircraft Systems (UAS) Action Summit.
    [29]Erzs6bet Merenyi, Valentina Sumin-Finn, Brian S. Penn. Mineral Exploration by Using Hyperspectral Image Classification and "Doming" Delineation. Pro. Thirteenth International Conference on Applied Geologic Remote Sensing.1999,1:308-315.
    [30]崔廷伟,马毅,张杰.航空高光谱遥感的发展与应用.遥感技术与应用,2003,18(2):118-122.
    [31]叶发旺,刘德长,赵英俊CASI/SASI航空高光谱遥感测量系统及其在铀矿勘查中的初步应用.世界核地质科学,2011,28(4):231-236.
    [32]Φyvind Frette, Svein Rune Erga, Jakob J. Stamnes, et al. Optical Remote Sensing of Waters with Vertical Structure. Applied Optics,2001,40(9):1478-1487.
    [33]Curtiss O. Davis. Applications of Hyperspectral Imaging in the Coastal Ocean. Proc. of SPIE, 2002,4816:33-41.
    [34]Kun Yu, Chuanmin Hu. Changes in Vegetative Coverage of the Hongze Lake National Wetland Nature Reserve:a Decade-Long Assessment Using MODIS Medium-Resolution Data. Journal of Applied Remote Sensing,2013,7:03589-1-12.
    [35]范学炜,张汉德,孙幸文.成像高光谱数据在赤潮检测和识别中的应用研究.国土资源遥感,2003,1:8-12.
    [36]Mr. Thomas M. Davis. Development of the Tactical Satellite 3 for Responsive Space Missions.4th Responsive Space Conference,2006, Los Angeles, CA.
    [37]M. Talvard, P. Andre, Y. Le-Pennec, et al. Status of the ARTEMIS Camera to Be Installed on APEX. Proc. of SPIE,2010,7741,774101D.
    [38]Ronald B. Lockwood, Thomas W. Cooley, Richard M. Nadile, et al. Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) Development and on-Orbit Focus. IEEE IGARSS,2008,4:251-254.
    [39]D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4): 1289-1306.
    [40]Justin Romberg. Imaging via Compressive Sampling. IEEE Signal Processing Magazine, 2008,25(2):14-20.
    [41]Emamnuel J. Candes, Justin Romberg, Terence Tao. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Fourier Information. IEEE Transactions on Information Theory,2006,52(2):489-509.
    [42]Emamnuel J. Candes. Compressive sampling. Proceedings of the International Congress of Mathematicians, Madrid, Spain,2006.
    [43]Edmund Y. Lam. Computational Photography:Advances and Challenges. Proc. of SPIE, 2011,8122:8122001-7.
    [44]David J. Brady. Optical Imaging and Spectroscopy. Wiley,2009.
    [45]T. Mirani, D. Rajan, M. P. Christensen, et al. Computational Imaging Systems:Joint Design and end-to-end Optimality. Applied Optics,2008,47(10):B1-B21.
    [46]Michael E. Gehm, Scott T. McCain, Nikos P. Pitsianis, et al. Static Two-dimensional Aperture Coding for Multimodal, Multiplex Spectroscopy. Applied Optics,2006,45(13):2965-2974.
    [47]D. J. Brady, M. E. Gehm. Compressive Imaging Spectrometers Using Coded Apertures. Proc. of SPIE,2006,6246:62460A-1-9.
    [48]M. E. Gehm, R. John, D. J. Brady, et al. Single-shot Compressive Spectral Imaging with a Dual-disperser Architecture. Optics Express,2007,15(21):14013-14027.
    [49]Ashwin Wagadarikar, Renu John, Rebecca Willett, et al. Single Disperser Design for Coded Aperture Snapshot Spectral Imaging. Applied Optics,2008,47(10):B44-B51.
    [50]Ashwin A. Wagadarikar, Nikos P. Pitsianis, Xiaobai Sun, et al. Spectral Image Estimation for Coded Aperture Snapshot Spectral Imagers. Proc. of SPIE,2008,7076:707602-1-15.
    [51]Ryoichi Horisaki, Jun Tanida. Multi-channel Data Acquisition Using Multiplexed Imaging With Spatial Encoding. Optics Express,2010,18(22):23041-23053.
    [52]Henry Arguello, Gonzalo R. Arce. Code Aperture Optimization for Spectrally Agile Compressive Imaging. J. Opt. Soc. Am.,2011,28(11):2400-2413.
    [53]刘树棠译.信号与系统第二版.西安交通大学出版社.
    [54]Michael Unser. Sampling—50 Years after Shannon. Proceedings of the IEEE,2000,88(4): 569-587.
    [55]Richard G. Baraniuk. More Is Less:Signal Processing and the Data Deluge. Science,2011, 331:717-718.
    [56]Emamnuel J. Candes, Terence Tao. Decoding by Linear Programming. IEEE Transactions on Information Theory,2005,51(12):4203-4215.
    [57]Emmanuel J. Candes. The Restricted Isometry Property and Its Implications for Compressed Sensing. C. R. Math. Acad. Sci. Paris,2008,346(9-10):589-592.
    [58]Richard Baraniuk, Mark Davenport, Ronald DeVore, et al. A Simple Proof of the Restricted Isometry Property for Random Matrices. Constr. Appox.,2008,28(3):253-263.
    [59]许志强.压缩感知.中国科学:数学,2012,42(9):865-877.
    [60]Emmanuel J. Candes, Michael B. Wakin. An Introduction to Compressive Sampling. IEEE Signal Processing Magazine,2008,25:21-30.
    [61]S. Muthukrishnan. Data Streams:Algorithms and Applications. Now Publishers, Boston, MA, 2005.
    [62]S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput.,1998,20:33-61.
    [63]D. L. Donoho. For Most Large Underdetermined Systems of Linear Equations, the Minimal L1-Norm Solution Is Also the Sparsest Solution. Communications on Pure and Applied Mathematics,2006,59(6):797-829.
    [64]Emmanuel J. Candes, Justin Romberg, Terence Tao. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory,2006,52:489-509.
    [65]M. Figueiredo, R. Nowak, An EM Algorithm for Wavelet-based Image Restoration. IEEE Transactions on Image Processing,2003,12(8):906-916.
    [66]Jose M. Bioucas-Dias, Mario A. T. Figueiredo. A New TwIST:Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration. IEEE Transactions on Image Processing,2007,16:2992-3004.
    [67]S. Mallat, Z. Zhang. Matching Pursuits with Time-Frequency Dictionary, IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [68]J. A. Tropp, A. C. Gilbert. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
    [69]Mark A. Davenport, Michael B. Wakin. Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property. IEEE Transactions on Information Theory,2010,56(9): 4395-4401.
    [70]Deanna Needell, Roman Vershynin. Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit. Journal Foundations of Computational Mathematics,2009,9(3):317-334.
    [71]Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, et al. Single-Pixel Imaging via Compressive Sampling. IEEE Signal Processing Magazine,2008,25(2):83-91.
    [72]Michael Lustig, David Donoho, John M. Pauly. Sparse MRI:The Application of Compressed Sensing or Rapid MR Imaging. Magnetic Resonance in Medicine,2007,58:1182-1195.
    [73]刘扬阳,吕群波,曾晓茹,等.静态计算光谱成像仪图谱反演的关键数据处理技术.物理学报,2013,62(6):060203.
    [74]Ashwin A. Wagadarikar, Michael E. Gehm, David J. Brady. Performance Comparison of Aperture Codes for Multimodal, Multiplex spectroscopy. Applied Optics,2007,46(22): 4932-4942.
    [75]Emmanuel Candes, Justin Romberg, Terence Tao. Stable Signal Recovery from Incomplete and Inaccurate Measurements. Wiley,2006.
    [76]S. T. McCAIN, M. E. GEHM, Y. WANG, et al. Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom. Applied Spectroscopy,2006, 60(6):663-671.
    [77]Yuehao Wu, Iftekhar O. Mirza, Gonzalo R. Arce, et al. Development of a Digital-Micromirror-Device-Based Multishot Snapshot Spectral Imaging System. Optics Letters,2011,36(14):2692-2694.
    [78]Ronald B. Lockwooda, Thomas W. Cooleya, Richard M. Nadilea, et al. Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) Design. Geoscience and Remote Sensing Symposium of IEEE,2006,1628-1630.
    [79]Ronald B. Lockwood, Thomas W. Cooley, Richard M. Nadile, et al. Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) System Overview and Objectives. Proc. of SPIE,2007,6661:666102-1-6.
    [80]M. A. Cutter, D. R. Lobb, T. L. Williams, et al. Integration and Testing of the Compact High-Resolution Imaging Spectrometer (CHRIS). Proc. of SPIE,1999,3753:1-12.
    [81]Nathan Hagen, Tomasz S. Tkaczyk. Compound Prism Design Principles, Ⅰ. Applied Optics, 2011,50(25):4998-5011.
    [82]Nathan Hagen, Tomasz S. Tkaczyk. Compound Prism Design Principles, Ⅱ:Triplet and Janssen Prisms. Applied Optics,2011,50(25):5012-5022.
    [83]Nathan Hagen, Tomasz S. Tkaczyk. Compound Prism Design Principles, Ⅲ:Linear-in-Wave Number and Optical Coherence Tomography Prisms. Applied Optics,2011,50(25): 5023-5030.
    [84]W. C. Miller, G. Hare, D. C. Strain, et al. A New Spectrophotometer Employing a Glass Fery Prism. J. Opt. Soc. Am.,1949,39(5):377-386.
    [85]张云翠,刘龙,曹冠英,等Fery棱镜光谱仪设计.红外与激光工程,2009,(2):287-289.
    [86]程欣,洪永丰,张葆,等.插入Fery棱镜的小型Offner超光谱成像系统的设计.光学精密工程,2010,18(8):1773-1780.
    [87]Mauri Aikion. Hyperspectral Prism-Grating-Prism Imaging Spectrography. VTT Publications, 2001.
    [88]朱善兵,季轶群,宫广彪,等.棱镜一光栅一棱镜光谱成像系统的光学设计.光子学报,2009,38(9):2270-2273.
    [89]E. Louis Cuellar, James Stapp, Justin Cooper. Laboratory and Field Experimental Demonstration of a Fourier Telescopy Imaging System. Proc. of SPIE,2005,5896: 58960D-1-15.
    [90]王之江,等.实用光学技术手册.第一版.北京:机械工业出版社,2007.
    [91]Curtiss O. DAVIS, Jeffery Bowles, Robert A. Leathers, et al. Ocean PHILLS Hyperspectral Imager:Design, Characterization, and Calibration. Opt. Express,2002,10(4):210-221.
    [92]Robert A. Neville, Lixin Sun, Karl Staenz. Detection of Spectral Line Curvature in Imaging Spectrometer Data. Proc. of SPIE,2003,5093:144-154.
    [93]Alain Hore,Djemel Ziou. Image quality metrics:PSNR vs. SSIM. IEEE, Pattern Recognition (ICPR),20th International Conference,2010,2366-2369.
    [94]Robert O. Green. Spectral Calibration Requirement for Earth-Looking Imaging Spectrometers in the Solar-Reflected Spectrum. Applied Optics,1998,37(4):683-690.
    [95]郁道银,谭恒英.工程光学.机械工业出版社.
    [96]王建宇,舒嵘,刘银年,等.成像光谱技术导论.科学出版社.
    [97]M. J. Ryan, J. F. Arnold. A Suitable Distortion Measure for the Lossy Compression of Hyperspectral Data. Geoscience and Remote Sensing Symposiumon of IEEE,1998,4: 2056-2058.
    [98]Bruno Aiazzi, Luciano Alparone, Stefano Barontia, et al. Tradeoff between Radiometric and Spectral Distortion in Lossy Compression of Hyperspectral Imagery. Pore, of SPIE,2004, 5208:141-152.
    [99]Corinne Mailhes, Paul Vermande, Francis Castanie. Spectral Image Compression. J. Optics, 1990,21:121-132.
    [100]石大莲,吕群波,崔燕,等.光谱失真客观度量方法初探.光子学报,2009,38(6):1530-1533.
    [101]马文坡编著.航天光学遥感技术.中国科学技术出版社.
    [102]ISO 12233, Photography-Electronic Still Picture Cameras-Resolution Measurements,2000.
    [103]Don Williams. Benchmarking of the ISO 12233 Slanted-Edge Spatial Frequency Response Plug-in.1998.
    [104]Peter D. Burns, Don Williams. Using Slanted Edge Analysis for Color Registration Measurement. Proc. PICS Conf., IS&T,1999,51-53.
    [105]Peter D. Burns. Slanted-Edge MTF for Digital Camera and Scanner Analysis. Proc. PICS Conf., IS&T,2000,135-138.
    [106]Peter D. Burns, Don Williams. Refined Slanted-Edge Measurement for Practical Camera and Scanner Testing. PICS Conf, IS&T,2002,191-195.
    [107]M. Estribeau, P. Magnan. Fast MTF Measurement of CMOS Imagers Using ISO 12233 Slanted-Edge Methodology. Proc. of SPIE,2004,5251:243-252.
    [108]Peter D. Burns. Application of Tatian's Method to Slanted-Edge MTF Measurement. Proc. of SPIE,2005,5668:255-261.
    [109]Robert D. Fiete. Modeling the Imaging Chain of Digital Cameras. Washington:SPIE Press, USA,2010.
    [110]Mario A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright. Gradient Projection for Sparse Reconstruction:Application to Compressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597.
    [111]http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html.
    [112]Henry Arguello, Gonzalo Arce. Code Aperture Design for Compressive Spectral Imaging. 18th Europen Signal Processing Conference,2010.
    [113]David Kittle, Kerkil Choi, Ashwin Wagadarikar, et al. Multiframe Image Estimation for Coded Aperture Snapshot Spectral Imagers. Applied Optics,2010,49(36):6824-6833.
    [114]Ashwin A.Wagadarikar, Nikos P. Pitsianis, Xiaobai Sun, et al. Video Rate Spectral Imaging Using a Coded Aperture Snapshot Spectral Imager. Opt. Express,2009,17(8):6368-6388.
    [115]P. Ye, H. Arguello, G. R. Arce. Spectral Aperture Code Design for Multi-shot Compressive Spectral Imaging. Dig. Holography and Three-Dimensional Imaging, OSA,2010.
    [116]Henry Arguelloa, Hoover F. Ruedaa, Gonzalo R. Arce. Spatial Super-Resolution in Code Aperture Spectral Imaging. Proc. of SPIE,2012,8365:83650A-1-6.
    [117]https://engineering.purdue.edu/-biehl/MultiSpec/hyperspectral.html.
    [118]Lau Wai Leung, Bruce King, Vijay Vohora. Comparison of Image Data Fusion Techniques Using Entropy and INI.22nd Asian Conference on Remote Sensing,2001,1:152-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700