用户名: 密码: 验证码:
甲玛斑岩—矽卡岩型铜矿床蚀变矿物组合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱短波红外技术用于地质勘查与找矿方面的研究在国外已有20余年的历史,该项技术核心就是通过蚀变矿物中O-H基在短波红外区间引发的振动强弱与区间变化确定不同的蚀变矿物类型。在国外,高光谱短波红外技术在地质找矿方面的应用开展较为广泛,有了许多成功的可供借鉴的实例,但在我国该项研究仍处于仪器和技术的研发阶段,采用高光谱短波红外技术仅局限于蚀变矿物的识别与蚀变填图,而通过蚀变矿物组合特征进行成矿预测尚未有大的进展。本文采用高光谱短波红外技术,选择西藏甲玛斑岩-矽卡岩型铜多金属矿床,通过测量48个钻孔岩心、17191个1:1万岩石测量样品,共获得了29250条光谱曲线数据,开展蚀变矿物组合特征研究,建立了高光谱勘查模型,进而开展区域和深部的找矿预测。为此,作者以《甲玛斑岩-矽卡岩型铜矿床蚀变矿物组合研究——基于高光谱短波红外技术》作为博士论文,通过研究,取得了如下研究进展:
     1、通过高光谱短波红外技术,识别了多种蚀变矿物,系统研究和总结了蚀变矿物组合特征,并据此划分了蚀变分带:(1)钻孔岩心中出现的蚀变矿物有17种,包括钠云母、白云母、多硅白云母、铁绿泥石、镁铁绿泥石、镁绿泥石、绿帘石、石膏、黑云母、蒙脱石、电气石、高岭石、黄玉、黄钾铁矾、伊利石、白云母和方解石。从南西向北东,浅部向深部,从青磐岩化→钾化叠加泥化变化,显示有多期次的岩浆侵位。矿物组合特征表现为:{(钠云母为主,少量白云母)+(大量铁绿泥石,少量镁铁绿泥石)+方解石}→{白云母+镁铁绿泥石+黑云母+少量石膏+(结晶程度不高的高岭石)+方解石}→{(白云母,多硅白云母)+(镁铁绿泥石+镁绿泥石)+大量黑云母+高岭石+地开石+黄玉+石膏+方解石}→{(白云母,多硅白云母)+极少量的镁绿泥石+绿帘石+大量黑云母+(结晶程度高的高岭石)+蒙脱石+石膏+黄钾铁矾+电气石+伊利石白云母+方解石}→{(白云母+多硅白云母)+(结晶程度高的高岭石)+蒙脱石+石膏+伊利石白云母}。(2)1:1万岩石测量样品测定的蚀变矿物10种,包括钠云母、白云母、多硅白云母、铁绿泥石、镁铁绿泥石、镁绿泥石、高岭石、绿帘石、叶腊石、方解石。发现象背山以南2km处,出现(钠云母+铁绿泥石)→(白云母+镁铁绿泥石+绿帘石+叶腊石+方解石)→(多硅白云母+镁绿泥石+绿帘石+叶腊石+方解石)组合,显示一种斑岩成矿系统由外带蚀变矿物向内带蚀变矿物的环状蚀变矿物组合分布特征。
     2、根据蚀变矿物组合的变化推断并钻探证实了甲玛矿床的深部存在含矿斑岩体,并确定其大致位置,含矿岩体位于ZK2420-ZK2871以北。指示深部斑岩体位置的蚀变矿物组合为多硅白云母+结晶程度高的高岭石+蒙脱石+黑云母+石膏+黄钾铁矾+伊利石白云母。随着温度的升高,白云母中的Al减少,绿泥石作为外围蚀变矿物其含Mg量增加,近斑岩体未见绿泥石类矿物,结晶好的高岭石化叠加,出现钾化带特征蚀变组合石膏+黑云母。
     3、通过矿化强度与蚀变矿物组合之间的关系,认为矿体的厚度与泥化蚀变矿物高岭石、蒙脱石的叠加和蚀变强度呈现一定的相关关系,表明成矿过程有多期次岩浆的侵位,导致泥化叠加在黄铁绢英岩化之上。该认识对外围找矿具有重要的指导作用,高岭石+蒙脱石的高级泥化蚀变矿物是寻找隐伏矿体的重要指示蚀变。
     4、结合1:1万岩石地化测量、1:1万高精度磁测成果,建立基于多元找矿信息的勘查模型,通过地质验证,证实了勘查模型的有效性和实用性。
     主要创新点:
     1、建立了基于高光谱短波红外技术的蚀变矿物组合和蚀变分带勘查模型,应用该模型确定了矿化分带与蚀变分带之间的关系,并由此可推断斑岩-矽卡岩型铜多金属矿的剥蚀深度。
     2、圈定了多个找矿远景区,提出了深部存在隐伏含矿斑岩体的新认识。
     3、甲玛铜钼矿石中绢云母波长的变化反映了绢云母中铝含量的相应变化,从绢云母波长的交替变化可以反演岩浆侵入期次,从靠近热源的14个钻孔中发现,矿体至少经历了5期岩浆的侵入。
Recently, high frequency wave infrared technology has been applied to mineprocessing and metallurgy, which has more than twenty years history on geologicalsurvey and prospecting. The core of this technology is making sure the differentmineral types, through altered minerals O-H radical vibrating with strong and weakor interval change triggered in high frequency wave infrared interval. Therefore,Hyperspectral high frequency wave infrared technology has accumulated some canbe used for successful reference on geology application in abroad, but it still stay onunderway stage in china. Hyperspectral high frequency wave infrared technology justhas been applied on altered minerals identifying and mapping, while analyzing alteredmineral assemblage to conduct the metallogenic prediction is not yet have a greatprocess. Hyperspectral high frequency wave infrared technology which used in TibetJia Ma porphyry-skarn copper deposit has been chosen as the research object in thispaper is that we obtained twenty-nine thousand two hundred and fifty curve ofspectrum by measuring forty-eight boring-cores and seventeen thousands one hundredand ninety-one rock samples. Carry out the research on altered mineral assemblage,building the high frequency wave prospecting model. The author use 《The alteredmineral assemblage research in Jiama porphyry-skarn copper deposit—based onHyperspectral high frequency wave infrared technology》as doctoral dissertation tittle, because of a mass of spectroscopic data analysis and altered mineral assemblagefeatures research, then obtain conclusions as follows:
     1.By high frequency wave infrared technology, distinguishing various alteredmineral, and make a system conclusion and research on altered mineral assemblagefeatures, then divided the altered mineral belt.(1) there are17kinds of altered mineralin drill core include: paragonite, muscovite, phengite, daphnite, Fe-Mg chlorite,amesite, epidote, gypsum, biotite, montmorillonite, tourmaline, kaolinite, topaz,jarosite, illite and calcite etc. from SW to NE, and superficial part to deep part that ispropylitization→potash feldspathization overlying with argillization, they all show themulti-magma emplacement. mineral assemblage are:{(paragonite is the most, a littlemuscovite)+(a large number of daphnite, a little Fe-Mg chlorite)+calcite}→{muscovite+Fe-Mg chlorite+biotite+a little gypsum+the kaolinite with lowcrystallization extent)+calcite}→{(muscovite, phengite)+(Fe-Mg chlorite+amesite)+a large number of biotite+kaolinite+dickite+topaz+gypsum+calcite}→{(muscovite, phengite)+a small number of amesite+epidote+a large number ofbiotite+(kaolinite with high crystallization extent)+montmorillonite+gypsum+jarosite+tourmaline+illite-muscovite+calcite}→{(muscovite+phengite)+(kaolinitewith high crystallization extent)+montmorillonite+gypsum+illite-muscovite}.(2)there are10samples in1:10000altered mineral, they are include paragonite,muscovite, daphnite, Fe-Mg chlorite, amesite, kaolinite, epidote, pyrophyllite, calciteetc.from north par to XiangBei mountain about two kilometers appeared(paragonite+daphnite)→(muscovite+Fe-Mg chlorite+epidote+pyrophyllite+calcite)→(phengite+amesite+epidote+pyrophyllite+calcite)is a circle distributioncharacteristics with ecto-entad.
     2. According to altered mineral assemblage change deduced that the deepporphyry location in Jia Ma porphyry-skarn copper deposit is near the north ofZK2420-ZK2871. It can indicated that the altered mineral assemblage in deepporphyry location is phengite+kaolinite with high extent+montmorillonite+biotite+gypsum+jarosite+illite-muscovite. With the temperature rising, Al is reducing inmuscovite, and chlorite as the ambient altered mineral that the Mg is increasing, butapproach to the deep porphyry location will not have Chlorite mineral, with thekaolinite crystallization extent increasing,the obvious products appearing in potassiczone these are gypsum+biotite.
     3.By analyzing the relationship between ore body and altered mineralassemblage, the thickness of ore body and quantity of argillization altered mineral kaolinite and montmorillonite have positive correlativity. Metallogenic process hasmulti-stages magmatic emplacements, lead to argillization overlying on theberesitization, it is very important to find mine in periphery,because ofkaolinite+montmorillonite advanced argillization altered mineral is the importantindication for finding concealed ore body.
     4.Combining with1:10000Rock geochemical survey,1:10000high-precisionmagnetic survey,building multielement ore prospecting model.By geology test andverify,confirming that prospecting model is effectiveness and practical applicability
     The main Innovations:
     1.By buliding high frequency wave infrared technology altered mineralassemblage and alteration zone exploration model to make sure mineralization zoningand alteration zoning relationship,from this can deduce the deep of Jia Ma porphyry-skarn copper deposit.
     2.Enclosing multi-prospective areas,put forward the new cognition is the hiddenporphyry rock mass in deep.
     3.The wavelength change indicates the content of Al in muscovite.The alternantchange of muscovite’s wavelength evident the magma intrusion periods.From the14drillholes close to heat source, it can be at least5periods magma intrusion.
引文
[1]李怀敏,张随安.浅谈数字遥感在地质找矿中的应用[J].矿业工程,2009,7(5):12-14
    [2]童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用[M].高等教育出版社,2006
    [3]章革.高光谱短波红外技术在矿区矿物填图中的应用研究[D].中国地质大学(北京):博士学位论文,2004
    [4]李建宏,申保川.斑岩铜矿的蚀变分带及成因模型[J].科协论坛,2011,(3):106-107
    [5] Tong,Q.X,Zhang,L.F.,&Xue, Y.Q..Development and application of hyperspectral remotesensing in China. Proceedings of SPIE-The International Society for OpticalEngineering,1998,pp.34-41
    [6]闵祥军,朱永豪,朱振海等.MAIS图像大气订正及其在岩矿制图中的应用.遥感技术与应用,1999,14(2):1-9
    [7]万余庆,闫永忠.高光谱技术在汝箕沟煤田烧变岩和Fe~(3+)丰度信息提取中的方法研究.国土资源遥感,2003,2:50-54.
    [8]Kruse,F.A.,Boardman,J.W.,&Huntington,J.F..Comparison of airborne hyperspectral data andEO-1Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1388-1400.
    [9] Hubbard, B.E.&Crowley, J.K.. Mineral mapping on the Chilean-Bolivian Altiplano usingco-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions.RemoteSensing of Environment,2005,99(1-2):173-186.
    [10] Davies,A.G., Chien,S., Baker,V., et al..Monitoring active volcanism with the AutonomousSciencecraft Experiment on EO-1.Remote Sensing of Environment,2006,101(4):427-446.
    [11]徐元进.面向找矿的高光谱遥感岩矿信息提取方法研究[D].中国地质大学博士学位论文,2009
    [12]张杰林,曹代勇.成像光谱数据挖掘与矿物填图技术研究[J].遥感技术与应用,2002,17(5):260-263
    [13] Clark R N,Swayze G A,Gallagher A.Mapping the Mineralogy and Lithology ofCanyonlands[A].Utah with imaging spectrometer Data and the Multiple Spectral Feature MappingSummaries of the Third Annual JPL Airborne Geosciences Workshop[C].Volume1:AVIRISWorkshop.JPL Publication92-14,1992
    [14] Rockwell B W,Clark R N,Eric Livo K,et al. Preliminary Materials Mapping in the Park CityRegion for the Utah USGS-EPA Imaging Spectroscopy Project Using Both high and Low AltitudeAVIRIS Data[A].Summaries of the8th Annual JPL Airborne Earth Science Workshop, Green RO,Ed.NASA JPL AVIRIS workshop[C].JPL Publication99-17.conducted Feb8-11,1999.
    [15]德吉.西藏优势矿产资源及其开发对策[J].资源与产业.2012,14(1):92-95
    [16] T'hompson, A.J.B., Hauff, P.L., Robitaille, A.J, Alteration mapping in exploration:application ofshort-wave infrared (SWIR) spectroscopy. SEG Newsletter39,1999,16-27
    [17]相爱芹.短波红外技术在矿物填图与遥感岩性识别中的应用研究[D].中南大学硕士学位论文,2007
    [18]王润生,甘甫平,闫柏琨等.高光谱矿物填图技术与应用研究[J].国土资源遥感,2010,(1):1-10
    [19]德吉,吴巧生.西藏矿产资源及其可持续发展初探[J].中国国土资源经济,2011,15-17
    [20]王银宏.矿产资源潜力定量评价研究——以长江中下游斑岩铜矿为例[D].中国地质大学(北京)博士学位论文.2005
    [21]王登红,唐菊兴,应丽娟等.甲玛与世界级铜矿的初步对比及下一步找矿工作建议[J].矿床地质,2011,30(2):197-206
    [22]李建威.矿产资源定量预测方法综述[J].地质科技情报.1995,14(4):57-63
    [23] Wang Shicheng,Wang Yutian,Liu Shaohua et al.Overview of a theory and method forprediction of mineral resourses in China.Mathematical Geology,1992,24(6):597-607
    [24]李紫金,胡光道.安徽月山大比例尺三维立体矿床统计预测[J].地球科学,1991,16(3):311-317
    [25]朱章森,张庆希,杨丽清.求异理论与无模型预测[M].北京:中国地质出版社,1991,49-55
    [26]中国地质科学院成矿远景区划室.成矿预测论文集[M].北京:中国地质出版社,1991,85-90
    [27]魏俊浩.隶属函数在成矿单元预测中的应用[J].有色金属矿产与勘查,1992,1(4):245-248
    [28]张俊福,邓本让,朱玉仙等.应用模糊数学[M].北京:中国地质出版社,1988,270-280
    [29]王鸿儒,刘文斌,姜效典等.模糊模式识别在成矿预测中的应用[J].地质与勘探,1990,26(4):28-33
    [30]成秋明,非线性成矿预测理论:多重分形奇异性—广义自相似性—分形谱系模型与方法[J].地球科学,2006,31(3):337-348.
    [31]成秋明,成矿过程的奇异性与矿产资源定量化的新理论与新方法[J].地学前缘,2007,14(5):42-53.
    [32]薛顺荣,胡光道,丁俊.成矿预测研究现状及发展趋势[J].云南地质,2001,20(4):411~416
    [33]牛广华,毛德宝,钟长汀,张崇山. GIS在阿尔金成矿带铜矿成矿中的应用[J].地质通报,2006,25(8):1006~1009
    [34]赵洁.新疆富蕴可可托海地区稀有金属定量预测与评价[D].中国地质大学(北京)硕士学位论文,2008
    [35]向中林,顾雪祥,董树义,王妍.基于GIS的综合信息成矿预测在危机矿山找矿中的应用——以沂南金矿区为例[J].地学前缘,2009,16(4):327~334
    [36] ALLAIS,M.Method of Appraising Economic Prospects of Mining Exploration over largeterritories:Algerian Sahara Case Study[J].Management Science,1957,3:285~347
    [37]阳正熙.西方国家的“成矿规律和成矿预测”的发展和现状[J].成都理工学院学报,2000,27:259~263
    [38] Bonham Carter G F,Agterberg F P,Wright D E.Intergration of Geological Datasets for GoldExploration in Nova Scotia[J].PHoto Grammetry and Remote Sensing,1987,54(11):1585~1592
    [39]薛顺荣,胡光道,丁俊.成矿预测研究现状及发展趋势[J].云南地质,2001,20(4):411~416
    [40]赵鹏大.成矿定量预测与深部找矿[J].地学前缘,2007,14(5):1-10
    [41] Carranza, E. J. M, Woldai, T. and Chikambwe, E. M.2005. Application of Data-DrivenEvidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites,Lundazi District, Zambia. Natural Resources Research,14(1):47~63.
    [42] Zuo, R., Cheng, Q. and Agterberg, F.P.,2009a.combining multilevel fuzzy comprehensiveevaluation analysis to mapping prospectivity. Ore Geology Reviews Application of a hybridmethod with asymmetric fuzzy relation35,101~108
    [43]西藏地质六队,西藏自治区墨竹工卡县甲马矿区铜铅多金属矿详查报告[R],2000
    [44]唐菊兴,王登红,钟康惠等,西藏自治区墨竹工卡县甲玛铜多金属矿勘探报告[R],2009
    [45]唐菊兴,王登红,钟康惠等,西藏自治区墨竹工卡县甲玛铜多金属矿外围铜多金属矿详查报告[R],2009
    [46]唐菊兴,王登红,汪雄武,钟康惠等.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,31(4):495-505
    [47]郭娜,陈建平,唐菊兴,郭科.基于RS技术的西藏甲玛铜多金属矿外围成矿预测研究[J].地学前缘,2010,17(4):280-289
    [48]杨世瑜,王瑞雪.矿床遥感地质问题[M].云南大学出版社,2003
    [49] RSI公司.ENVI遥感影像处理实用手册[M],2005
    [50]全苏地质研究所.蚀变围岩及其找矿意义[M].地质出版社,1955
    [51]胡受奚,叶瑛,方长全.交代蚀变岩岩石学及其找矿意义[M].地质出版社,2004
    [52]连长云,章革,元春华,杨凯.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J].中国地质,2005,32(3):483-493
    [53]王登红,唐菊兴,应丽娟等.西藏甲玛矿区角岩特征及其对深部找矿的意义[J].岩石学报,2011,27(7):2103-2108
    [54]连长云,章革,元春华.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J].矿床地质,2005,24(6):621-636
    [55]肖波,秦克章,李光明等.西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆——来自岩浆成因硬石膏的证据[J].地质学报,2009,83(12):1860-1867
    [56]杨志明,侯增谦,宋玉财等.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,2008,27(3):279-314
    [57]郭科.复杂地质地貌区多尺度地球化学异常识别的非线性研究[D].成都理工大学:博士学位论文,2005
    [58]陈聆.地球化学致矿异常非线性分析方法研究[D].成都理工大学:博士学位论文,2011
    [59]洛尼·格拉佩斯,陈国能,张献河等.花岗岩成因:原地重熔与地壳演化[M].中国地质大学出版社,2009
    [60] MICROMINE培训教程[M].北京:MICROMINE中国,2008
    [61]汤国安,刘学军,闾国年等.地理信息系统教程[M].高等教育出版社,2007
    [62]王登红,唐菊兴,应丽娟等.西藏甲玛矿区角岩特征及其对深部找矿的意义[J].岩石学报,2011,27(7):2103-2108
    [63]姚晓峰,王友,畅哲生等.西藏甲玛铜多金属矿夕卡岩特征及成因意义[J].成都理工大学学报(自然科学版).2011,38(6):662-669
    [64]应丽娟,唐菊兴,王登红等.西藏甲玛超大型铜矿区斑岩脉成矿时代及其与成矿的关系[J].岩石学报,2011,27(7):2095-2100
    [65]周业鑫,汪雄武.讨论西藏甲玛超大型铜多金属矿床构造特征及其成因意义[J].矿物学报,2011,增刊,440-441
    [66]唐菊兴,邓世林,郑文宝等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011,30(2):179-193
    [67]施俊法,唐金荣,周平等.世界找矿模型与矿产勘查[M].北京:地质出版社,2010
    [68]郑文宝,陈毓川,宋鑫,唐菊兴等,西藏甲玛铜多金属矿元素分布规律及地质意义[J],矿床地质,2010,29(5):775-784
    [69]王艺云,唐菊兴,郑文宝等.西藏甲玛铜多金属矿床矿石组构研究及意义[J].矿物学报,2011,增刊,865-866
    [70]王葳平,唐菊兴.西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测[J].矿床地质,2011,30(6):1017-1036
    [71]郭衍游,王焕,畅哲生等.西藏甲玛铜多金属矿有用元素空间分布特征及地质意义[J].成都理工大学学报(自然科学版),2011,38(6):684-687
    [72]周云,汪雄武,唐菊兴等.西藏甲玛铜多金属矿床成矿流体来源及演化[J].矿床地质,2011,30(2):231-245
    [73]秦志鹏,汪雄武,多吉等.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义[J].矿床地质,2011,30(2):339-348
    [74]应丽娟,王登红,唐菊兴等.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,2010,84(8):1165-1173
    [75]杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究[D].中国地质大学(北京):博士学位论文,2005
    [76]赵鹏大,陈永清,刘吉平等.地质异常成矿预测理论与实践[M].北京:中国地质大学出版社,1999
    [77]赵鹏大.宁芜地区铁矿床统计预测[A].宁芜火山岩铁矿床会议选集[C].北京:地质出版社,1978
    [78]赵鹏大.“三联式”资源定量预测与评价—数字找矿理论与实践探讨[J].地球科学—中国地质大学学报,2002,27(5):483-489.
    [79]王世称.综合信息矿产预测的理论与方法[J].长春地质学院学报,1989,增刊,1-110
    [80]李佑国.基于“3S”技术的攀西地区铜镍铂族元素矿床找矿靶区筛选[D].成都理工大学博士学位论文,2007
    [81]朱大明.基于地理信息系统(GIS)的个旧高松矿田成矿预测[D].昆明理工大学博士学位论文,2002
    [82]高景刚.新疆北部主要斑岩铜矿带成矿条件及遥感定位研究[D].长安大学博士学位论文,2008
    [83]陈勇.云南个旧锡矿东区隐伏矿体定位与定量预测研究[D].中国地质大学(北京)博士学位论文,2009
    [84]胡受奚,交代蚀变岩岩相学[M].地质出版社,1980
    [85]张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,54(4):30-36.
    [86] Sabins, F. F. Remote sensing for mineral exploration. Ore Geology Reviews,1999,14:157-183.
    [87] Colins W.填绘热液蚀变岩带机载分光辐射计数据的分析及陆地卫星数据的应用[A].地质部情报研究所,遥感专辑——矿物岩石的可见-中红外光谱及其应用,第一辑[M].北京:地质出版社,1980:358-572.
    [88]闫柏琨,刘圣伟,王润生,等.热红外遥感定量反演地表岩石的SiO2含量[J].地质通报,2006,25(5):639-643.
    [89] Baldridge, A. M., Hook, S. J., Grove, C. I., Rivera, G. The ASTER spectral library version2.0[J]. Remote Sensing of Environment,2009,113:711-715.
    [90] Abrams,M.J,Ashley,R.P.,Brown,L.C.,Goetz,A.F.H.,KaMe,A.B.Mappingof hydrothermal alteration in the Cuprite mining district,Nevada,using aircraft scanning imagesfor the spectral region0.46to2.36mm[J].Geology,1977(5):713-718.
    [91] Rowan,L.C.,Goetz,A.F.H. and Ashley,R.P. Discrimination of Hydrothermally Altered andUnaltered Rocks in Visible and Near-infrared Multispectral Images [J]. GeoPHysics,1977(42):522-535.
    [92]刘燕君.遥感图象中矿产信息的再现及其意义[J].科学通报,1983(16):995-997.
    [93]赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,9(3):12-16.
    [94]张满郎,郑兰芬.Landsat TM及JERS-1SAR数据在金矿探测中的应用研究[J].环境遥感,1996,11(4):260-266.
    [95]朱嘉伟,张天义,盛吉虎.金矿遥感异常信息自动提取方法研究及其应用[J].国土资源遥感,1996,30(4):45-50.
    [96]陈松龄,卢福宏,高光明等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,2001,48(2):13-18.
    [97] Rowan, L. C., Mars, J. C., Simpson, C. J. Lithologic mapping of the Mordor, NT, Australiaultramafic complex by using the Advanced Spaceborne Thermal Emission and ReflectionRadiometer(ASTER). Remote Sensing of Environment,2005,99:105-126.
    [98] Tommaso, I. D., Rubinstein, N. Hydrothermal alteration mapping using ASTER data in theInfiernillo porPHyry deposit, Argentina. Ore Geology Reviews,2007,32:275-290.
    [99]杨长保,姜琦刚,刘万崧,等.基于ASTER数据的内蒙古东乌珠穆沁北部地区遥感蚀变信息提取[J].吉林大学学报(地球科学版),2009,39(6):1163-1167.
    [100]陈建明,孙卫东看,闫柏琨,等.Aster多光谱遥感异常提取在新疆天湖铁矿的应用[J].新疆地质,2009,27(4):368-372.
    [101]冯雨林,刑德和,陈江,等.遥感混合蚀变信息在辽西等地矿产调查中的应用[J].地质与资源,2009,18(2):149-151.
    [102] Aboelkhair, H., Ninomiya, Y., Watanabe, Y., Sato, I. Processing and interpretation of ASTERTIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert ofEgypt. Journal of African Earth Sciences,2010,58:141-151.
    [103] Loughlin W P. Principal component analysis for alteration mapping. Proceedings of the8thThematic Conference on Geologic Remote Sensing, Denver, USA.1991:293-306.
    [104]张满郎.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,1996,11(3):1-6.
    [105]马建文.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
    [106]张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,36(2):46-53.
    [107] Green, R. O.,&Boardman, J. W. Exploration of the relationship between informationcontent and signal-to-noise ratio and spatial resolution in AVIRIS spectral data. Summarie of theninth annual JPL airborne geosciences workshop.2000, Jet Propulsion Laboratory SpecialPublication, vol.00-18.12pp.
    [108] Boardman, J. W.,&Green, R. O. Exploring the spectral variability of the earth as measuredby AVIRIS in1999. Summaries of the ninth annual JPL airborne geosciences workshop.2000, JetPropulsion Laboratory Special Publication, vol.00-18.10pp.
    [109]吴昀昭,田庆久,陈骏,等.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,2004,10(1):114-119.
    [110] RanJbar, H., Honarmand, M., Moezifar, Z. Application of the Crosta technique for porPHyrycopper alteration mapping, using ETM+data in the southern part of the Iranian volcanicsedimentary belt. Journal of Asian Earth Sciences2004,24:237-243.
    [111]杨波,李京,陈云浩,等.甘肃鹰嘴山地区岩体和隐伏岩体遥感信息提取研究[J].现代地质,2005,19(3):464-470.
    [112]毛晓长,刘文灿,杜建国,等.ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例[J].现代地质,2005,19(2):309-314.
    [113]张玉君,杨建民,姚佛军.多光谱遥感技术预测矿床资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘(中国地质大学(北京);北京大学),2007,14(5):63-70.
    [114]吕凤军,郝跃生,石静,等.ASTER遥感数据蚀变遥感异常提取研究[J].地球学报,2009,30(2):271-276.
    [115]张廷斌,钟康慧,易桂花,等.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J].地质与勘探,2009,45(4):444-449.
    [116]马建文,马超飞.基于空间角度理论的卫星光学遥感数据认知与挖掘[J].中国图象图形学报,1999,4(A)(11):918-923.
    [117]马建文,刘素红,马超飞.遥感多维空间数据场特征的角度分析与应用[J].遥感学报,2001,5(1):17-21.
    [118]王晓鹏,谢志清,伍跃中.西昆仑塔什库尔干地区遥感找矿异常提取方法研究[J].地质找矿论丛,2002,17(2):136-139.
    [119] Rowan, L. C., Mars, J. C., Simpson, C. J. Lithologic mapping in the mountain pass,California area using Advanced Spaceborne Tthermal Emission and ReflectionRadiometer(ASTER) data. Remote Sensing of Environment,2003,84:350-366.
    [120]刘成,金成洙,李笑梅,等.利用混合像元线性分解模型提取卧龙泉地区粘土蚀变信息[J].地质找矿论丛,2003,18(2):131-133.
    [121]相爱芹,朱谷昌,杨自安,等.多光谱遥感蚀变信息提取的新方法应用研究[J].矿产与地质,2006,20(6):656-658.
    [122]傅文杰,洪金益,朱谷昌.基于SVM遥感矿化蚀变信息提取研究[J].国土资源遥感,2006,68(2):16-19.
    [123]邹林,杨自安,朱谷昌,等.多光谱遥感蚀变信息提取新方法研究[J].地质与勘探,2006,42(6):71-76.
    [124] Rowan, L. C., Schmidt, R. G., Mars, J. C. Distribution of hydrothermally altered rocks in theReko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensingof Environment,2006,104:74-87.
    [125]杨长保,姜琦刚.辽东地区矿化蚀变遥感信息提取的研究和应用[J].遥感信息,2007,4:20-23.
    [126] Zhang, X. F., Pazner, M. Duke, N. Lithologic and mineral information extraction for goldexploration using ASTER data in the south Chocolate Mountains(California). ISPRS Journal ofPHotogrammetry&Remote Sensing,2007,62:271-282.
    [127]甘甫平,王润生,马蔼乃,等.基于光谱匹配滤波的蚀变信息提取[J].中国图象图形学报,2008,8(A),2:147-150.
    [128]傅文杰.基于光谱相似尺度的遥感矿化蚀变信息提取[J].地质找矿论丛,2008,23(2):161-164.
    [129]Azizi, H., Tarverdi, M. A., Akbarpour, A. A. Extraction of hydrothermal alterations fromASTER SWIR data from east ZanJan, northern Iran. Advances in Space Research,2010,46:99-109.
    [130]张廷斌,唐菊兴,黄丁发.矿化蚀变信息提取的TM/ETM+遥感影像模式[J].遥感信息,2009,2:47-51.
    [131]甘甫平,王润生,马蔼乃,等.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用,2002,17(3):140-147.
    [132]王钦军,蔺启忠.包尔图地区ASTER遥感岩性提取[J].地理与地理信息科学,2006,22(2):9-12.
    [133] Gad, S., Kusky, T. ASTER spectral ratioing for lithological mapping in the Arabian-Nubianshield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research,2007,11:326-335.
    [134] Amer, R., Kusky, T., Ghulam, A. Lithological mapping in the Central Eastern Desert ofEgypt using ASTER data. Journal of African Earth Sciences,2010,56:75-82.
    [135] Clark, R. N., Swayze, G. A. Mapping minerals, amorPHous materials, environmentalmaterials, vegetation, water, ice, and snow, and other materials [A]. In The USGS TricorderAlgorithm: in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop[C]. JPLPublication,1995:39-40.
    [136]Kruse, F. A., Perry, S. I., Caballero, A. Integrated Multispectral and Hyperspectral MineralMapping, Los Menucos. Rio Negro[A]. In: Part Ⅱ: EO-1Hyperion/AVIRIS Comparisons andLandsat TM/ASTER Extensions[C]. Argentina,2002.
    [137]陈江,付建飞.先进星载热发射和反射辐射仪(ASTER)——地质学家的最佳选择[J].地质通报,2006,25(5):649-652.
    [138]叶发旺,赵英俊,涂育红.CBERS-02B数据在砂岩型铀矿勘查中的应用及其数据评价/http://www.cresda.com/n16/index.html
    [139]刘庆生,燕守勋,马超飞,等.内蒙哈达门沟金矿区山前钾化带遥感信息提取[J].遥感技术与应用,1999,14(3):7-11.
    [140]王青华,王润生,郭小方.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感,2000,46(4):39-43.
    [141] Rowan, L. C., Crowley, J. K., Schmidt, R. G., Ager, C. M., Mars, J. C. Mappinghydrothermally altered rocks by analyzing hyperspectral image(AVIRIS) data of forested areas inthe Southeastern United States. Journal of Geochemical Exploration,2000,68:145-166.
    [142]张宗贵,王润生,郭小方,等.基于地物光谱特征的成像光谱遥感矿物识别方法[J].地学前缘(中国地质大学,北京),2003,437-443.
    [143]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004.
    [144] Rowan, L. C., Simpson, C. J., Mars, J. C. Hyperspectral analysis of the ultramafic compexand adJacent lithologies at Mordor, NT, Australia. Remote Sensing of Environment,2004,91:419-431.
    [145] Rowan, L. C., Simpson, C. J., Mars, J. C. Hyperspectral analysis of the ultramafic complexand adJacent lithologies at Mordor, NT, Australia. Remote Sensing of Encironment,2004,91:419-431.
    [146]阚明哲,田庆久,张宗贵.新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取[J].国土资源遥感,2005,63(1):37-40.
    [147] Debba, P., Ruitenbeek, F. J. A., Meer, F. D., Carranza, E. J.M., Stein, A. Optimal fieldsampling for targeting minerals using hyperspectral data. Remote Sensing ofEnvironment,2005,99:373-386.
    [148]甘甫平,王润生.高光谱遥感技术在地质领域中的应用[J].国土资源遥感,2007,74(4):57-60.
    [149] Kratt, C., Calvin, W. M., Coolbaugh, M. F. Mineral mapping in the Pyramid Lake basin:Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensingof Environment,2010,114:2297-2304.
    [150] Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, usingHyMap and ASTER remote sensing data. Advances in Space Research,2011,47:60-73.
    [151] Hubbard, B. E., Crowley, J.K. Mineral mapping on the Chilean-Bolivian Altiplano usingco-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. RemoteSensing of Environment,2005,99:173-186.
    [152] Hook, S. J., Myers, J. J., Thome, K. J., Fitzgerald, M., Kahle, A. B. The MODIS/ASTERairborne simulator(MASTER)—a new instrument for earth science studies. Remote Sensing ofEnvironment,2001,76:93-102.
    [153] Vaughan, R. G., Hook, S. J., Calvin, W. M., Taranik, J. V. Surface mineral mapping atSteamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. RemoteSensing of Environment,2005,99:140-158.
    [154] Mars, J. C., Rowan, L. C. Spectral assessment of new ASTER SWIR surface reflectancedata products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment,2010,114:2011-2025.
    [155] Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., Mauger, A. J. Seamless geologicalmap generation using ASTER in the Broken Hill-Curnamona province of Australia. RemoteSensing of Environment,2005,99:159-172.
    [156] ZHANG YuJun, YANG Jianmin, YAO FoJun. The potetials of multi-spectral remote sensingtechniques for mineal prognostication—Taking Mongolian Oyu Tolgoi Cu-Au deposit as anexample. Earth Science Fromtiers,2007,14(5):63-70.
    [157]植起汉,张远飞,朱谷昌.多源地学数据综合处理技术在金属矿产预测中的应用[J].国土资源遥感,1990,(2):8-12.
    [158]刘荫椿,董晓辉,刘志杰.基于GIS的金矿多源地学信息复合处理及应用[J].黄金地质,1997,3(1):63-66.
    [159]杨自安,徐国瑞,邹林,等.化探与遥感信息在青海两兰地区找矿预测中的应用[J].地质与勘探,2003,39(6):42-45.
    [160]吴德文,袁继明,张远飞,等.遥感与化探数据融合处理技术方法及应用研究[J].国土资源遥感,2005,65(3):44-47.
    [161]易桂花,张廷斌,倪师军,等.五龙沟金矿集中区化探异常与遥感蚀变异常的综合分析[J].中国矿业,2010,19(12):104-106.
    [162]赵一鸣.中国矽卡岩矿床[M].地质出版社,1990
    [163]陈建平,唐菊兴,付小方等.西南三江中段成矿规律与成矿预测研究[M].地质出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700