用户名: 密码: 验证码:
多功能介孔硅基吸附剂的制备及其对重金属废水的处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体重金属污染所引起的环境问题已严重危及社会经济的可持续发展与民众身体健康,其处理技术研究受到了国内外学者的广泛关注。吸附法是一种常用的重金属离子污染物处理技术之一,因其吸附材料价廉易得、不需要复杂装置和添加额外化学物质等特点而被越来越多地应用。因此,寻求各种具有特殊或优异性能如具有特殊选择性、重复利用率高、成本低廉、制备简单和去除效率高的吸附剂,是该领域最引人注目的研究热之一。
     本学位论文综述了水环境中重金属污染的危害与处理技术的国内外研究进展。同时,基于有序介孔硅基材料具有均一可调的中孔孔径、稳定的骨架结构、大比表面积及可修饰的内表面的优点,设计并合成了一系列去除效率高的新型介孔吸附材料,并借助红外光谱、扫描电镜等方法对所得各种吸附剂进行了表征研究;利用批实验方法进行了所得吸附剂对水体中金属离子吸附实验,考察了各种影响因素如温度、溶液pH值、金属离子初始浓度、接触时间、竞争离子和离子强度等对吸附剂性能的影响,并应用各种动力学、吸附等温线和热力学模型对实验数据进行了拟合和讨论;以新的视角开发吸附剂的循环利用的技术,实现材料的多功能化。本学位论文的主要结果如下:
     1.采用后嫁接法和共缩聚法利制备了水杨醛Schiff base功能化介孔硅基吸附材料SA-SBA-15,前者合成的SA-SBA-15和后者合成的SA-SBA~(-1)5对Cu~(2+)的饱和吸附量分别为60.0mg g~(-1)和20.4mg g~(-1),最佳溶液pH值为5。动力学研究表明,两种改性方法合成的SA-SBA-15对Cu~(2+)的吸附非常快,在40min均达到平衡。吸附动力学过程可以用拟二级动力学和粒子扩散方程解释。用等温线模型对平衡吸附数据进行拟合,发现平衡数据比较符合Langmuir等温线模型。SA-SBA-15具有良好的循环使用能力,EDTA解吸5次后吸附剂依然可以重复使用。SA-SBA-15吸附Cu~(2+)后形成的Cu-SA-SBA-15具有良好的杀菌性能,对大肠杆菌的最小抑菌浓度为160μg mL~(-1),对金黄色葡萄球菌的最小抑菌浓度为120μg mL~(-1)。
     2.采用后嫁接法得到8-羟基喹啉Schiff base功能化介孔硅基吸附剂S-SBA-15,结果发现S-SBA-15与很多其他廉价和商业化的吸附剂相比,可以更好地选择性去除废水中的Cu~(2+)。最大吸附容量为46.45mg g~(-1),最佳溶液pH值为5.5。动力学研究表明S-SBA-15吸附反应较快,在30min吸附均达到平衡,平衡数据比较符合Langmuir等温模型。同时,吸附剂对Cu~(~(2+))的的吸附动力学符合拟二级反应模型和粒子扩散模型。虽然其它离子的存在,如Zn~(2+),Co~(2+),但是S-SBA-15表现出从多元金属离子溶液中对Cu~(~(2+))具有良好的选择性吸附性能。S-SBA-15吸附Cu~(2+)后形成的Cu-S-SBA-15最小抑菌浓度实验结果表明对大肠杆菌和金黄色葡萄球菌均有优秀的抗菌性能,其最小抑菌浓度小于40μg mL~(-1),属于广谱抗菌剂。
     3.通过后嫁接法,成功制备用于去除Pb~(2+)的有序介孔硅材料EDTA-SBA-15。EDTA有效接枝在SBA~(-1)5孔道表面,羧基含量为0.908m mol g~(-1)。对Pb (II)表现出优秀的吸附能力,EDTA-SBA-15对Pb (II)的吸附机理涉及了Na和Pb的离子交换以及表面络合作用。根据Langmuir模型计算,最大吸附容量为273.2mg g~(-1),最佳溶液pH值为5。EDTA-SBA-15对Pb (II)的吸附在20min既能达到平衡,动力学数据能很好的用拟二级动力学模型进行描述,孔扩散过程在吸附过程中也扮演了重要角色,这主要归因于合成的吸附剂具有多孔结构。此外,吸附剂有非常好的重复使用性。对金属离子的多组分吸附结果表明,EDTA-SBA~(-1)5对Pb (II)有良好的吸附选择性,可从Pb~(2+)/Cd~(2+),Pb~(2+)/Hg~(2+)或Pb~(2+)/Hg~(2+)/Cd~(2+)的金属离子混合液中选择性吸附Pb~(2+)。
     4.通过后嫁接法成功制备一种多功能介孔吸附剂RBHS-SBA-15,材料结构是荧光介孔(罗丹明B感受器在孔道里),在环境保护领域的应用是检测,吸附,去除水溶液中的Hg~(2+)。制备的介孔材料表现出很好的荧光敏感性和在多种金属离子(Na+, Mg~(2+), Mn~(2+), Co~(2+), Ni~(2+), Zn~(2+), Cd~(2+), Ag+, Pb~(2+)和Cu~(~(2+)))对Hg~(2+)选择的选择性。在加入Hg~(2+)之后,观察到明显的发射改变,Hg~(2+)检测限是1ppb。微球对Hg~(2+)的吸附过程可以很好的用Langmuir描述,吸附容量为34.2mg g~(-1)。吸附能在30分钟之内达到平衡,动力学数据符合拟二级动力学模型和粒子扩散模型。
     研制的功能化SBA-15吸附剂在重金属废水深度处理中具有极大的应用潜力。
Heavy metal as one of the important pollutants in water becomes a severepublic health concern because of its persistent nature and negative effect on theenvironment. They are difficultto remove from aqueous waste streams with tracequantities using conventional methods such aschemical precipitation. The process ofsorption/ion exchange appears to be one of the few alternatives available for suchsituations. To explore the availability of different kinds of adsorbents associated withconvenient procedures for obtaining high efficiency has been a hot topic recently.
     This paper discussed the hazardous effect of heavy metal ions in aqueoussolution and the development of treatment technologies for heavy metal removal.Based on the viewpoints of speciation of heavy metals in waters, the distribution ofdifferent species of heavy metals and the binding mechanism with adsorbents wereinvestigated. To develop new efficient solid adsorbents by chemical modification,four different kinds of solid extractants were prepared including SA-SBA-15, S-SBA-15,EDTA-SBA-15and RBHS-SBA-15. Then these new adsorbents were characterized withFTIR, TEM and XRD. Furthermore, adsorption experiments in a batch method werecarried out to examine the adsorption performance for some heavy metal ions. Manymodels such as kinetic, thermodynamic, equilibrium models were used to fit theexperiment data to understand the adsorption mechanisms. This thesis contains thefollowing five sections:
     1. Salicylidene Schiff base-functionalized SBA-15mesoporous silica is prepared,characterized and used as an adsorbent for heavy metal ion, Cu (II). By two modifiedmethods(post-grafting and co-condesnsation), the organic-inorganic hybridmesoporous materials have been synthesized by tetraethoxysilane (TEOS) with3-aminopropyltrimethoxy-silane (APTES) and salicylaldehyde in sequence. Thefunctionalized mesoporous materials are characterized by means of XRD, FT-IR, TEMand N2adsorption-desorption analysis. The result indicates that, after sequentchemical modifications of aminopropyl and schiff base, the primary hexagonallyordered mesoporous structure of SBA-15is not affected, exhibits the excellent adsorption capacity. The removal rate of Cu~(~(2+)) in aqueous media is high and theadsorbent can be regenerated by EDTA treatments without changing its properties.Meanwhile,Cu-SBA-15antibacterial agent was shown to be an effective bactericideagainst Bacillus coli and Staphylococcus aureus,indicating that it has goodantibacterial effect.
     2.8-hydroxyquinoline Schiff base-functionalized SBA-15mesoporous silica wasprepared and S-SBA-15was found to be a better adsorbent for selective removal ofCu~(2+) from polluted water. The maximum adsorption capacity of Cu~(2+)(46.45mg g-1)onto S-SBA-15was obtained at pH5.5. From kinetic studies, it was found that theadsorption of Cu~(2+) was fast and it reached equilibrium around approximately30min.Langmuir models fitted the experimental data well. The kinetics of adsorption usingS-SBA-15was explained by the second-order kinetic model and theintraparticlediffusion model. Although the presence of other ions such as Zn~(2+), Co~(2+) werefound to have effect on Pb(II) adsorption, S-SBA-15show a good selective removal ofPb(II)from multi-metal ions solution. Meanwhile,Cu-S-SBA-15antibacterial agentwas shown to be an effective bactericide against Bacillus coli and Staphylococcusaureus even with the minimal inhibitory concentration (MIC) of40μg mL~(-1),indicating that it has good antibacterial effect.
     3. An organic-inorganic hybrid mesoporous silica material was synthesized bytwo-step post-grafting method of SBA-15with3-aminopropyltrimethoxy-silane(APTES) and thionyl dichloride (SOCl2) activated ethylenediaminetetraacetic acid(EDTA) in sequence and measured by means of Fourier transform infraredspectroscopy (FT-IR), X-ray diffraction (XRD), elemental analysis (EA), transmissionelectron microscopy (TEM), nitrogen (N2) adsorption-desorption analysis and backtitration. The material was found having the beneficial properties of mesoporoussilica SBA-15and EDTA. Adsorption potential of the material for Pb(II) removal fromaqueous solution was investigated by varying experimental conditions such as pH,contact time and initial metal concentration. The removal efficiency of Pb~(2+) was highunder the studied experimental conditions. The adsorption equilibrium could bereached within20minutes and the kinetic data were fitted well by pseudo-second-order and intraparticle diffusion model. The adsorbent exhibited afavorable performance and its maximum adsorption capacity calculated by Langmuirmodel was273.2mg g?1. Recycling experiments showed the adsorbent could beregenerated by acid treatment without altering its properties. The chemical states ofthe elements involved in the adsorption were analyzed by X-ray photoelectronspectroscopy (XPS). The results demonstrated that the adsorption mechanism of thematerial involved Na Pb ion-exchange and carboxyl group dominated surfacecomplexation.
     4. A novel,‘‘all-in-one’’, multifunctional microsphere with a fluorescentmesoporous silica (Rhodamine B coordinate receptor inside) has been successfullyfabricated using a sol–gel method and small molecular (CTAB) surfactants asstructure-directing agents. At the same time, they were examined for environmentalprotection applications to detect, adsorb and remove Hg~(2+) in aqueous solution. Theprepared mesoporous materials were fluorescent and mesoporous. Thesemultifuctional microspheres showed excellent fluorescence sensitivity and selectivitytowards Hg~(2+) over other metal ions (Na+, Mg~(2+), Mn~(2+), Co~(2+),Ni~(2+), Zn~(2+), Cd~(2+), Ag+,Pb~(2+) and Cu~(2+)). Upon the addition of Hg~(2+), an overall emission change of16-foldwas observed, and the detection limit of Hg~(2+) was as low as1ppb. The adsorptionprocess of Hg~(2+) on the RBHS-SBA-15was well described by the Langmuir equation.The equilibrium can be established within30minutes and the adsorption capacitywas34.2mg g-1. These results suggest that these ‘‘all-in-one’’ multifunctionalmesoporous scilica are potentially useful materials for simultaneously rapidlydetecting and recovering dangerous pollutants in aqueous solution.
     Chemical modified SBA-15developed in this paper have great potential for theadvanced treatment of wastewater containing heavy metals.
引文
[1]中华人民共和国环境保护部.2011年中国环境状况公报[EB].2012:4-14.
    [2]K.Chandra Sekha, N.S.Chary. Fractionation studies and bioaccumulation ofsediment-bound heavy metals in Kolleru lake by edible fish[J]. Environmental International,2004,29(7):1001-1008.
    [3]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000:15-68.
    [4]SrivastavaNK, MajumderCB. Novel biofiltration methods for the treatment of heavymetals from industrial wastewater[J]. Joumal of Hazardous Materials,2008,151(1):1-8.
    [5]Babieh H,Devanas MA, Stotzky G. The mediation of mutagenieity and clastogenieityof heavy metals by Physicochemical factors[J]. Environmental research,1985,37(2):253-286.
    [6]Aswathanarayana U. Mineral resources management and the environment[J]. Routledge,Netherlands,2003:223-256.
    [7]Alloway BJ, Ayres DC. Chemical Principles of Environmental Pollution[J]. Water, Air&Soil Pollution,1998,102(1):216-218.
    [8]Rule KL, Comber SDW, Ross D. Diffuse sources of heavy metals entering an urbanwastewater catchment[J]. Chemosphere,2006,63(1):64-72.
    [9]Cheng S. Heavy metal pollution in China: origin, pattern and control[J]. EnvironmentalScience and Pollution Research,2003,10(3):192-198.
    [10]Castelblanque J, Salimbeni F. NF and RO membranes for the recovery and reuse ofwater and concentrated metallic salts from waste water produced in the electroplatingprocess[J]. Desalination,2004,167(1-3):65-73.
    [11]Zhao M, Duncan JR, Van Hille RP. Removal and recovery of zinc from solution andelectroplating effluent using Azolla filiculoides[J]. Water Research,1999,33(6):1516-1522.
    [12]Alvarez-Ayuso E, Garcia-Sanchez A, Querol X. Purification of metal electroplatingwaste waters using zeolites[J]. Water research,2003,37(20):4855-4862.
    [13]Vegli F, Quaresima R, Fornari P, et al. Recovery of valuable metals from electronic andgalvanic industrial wastes by leaching and electrowinning[J]. Waste Management,2003,23(3):245-252.
    [14]Jarup L. Hazards of heavy metal contamination[J]. British Medical Bulletin,2003,68(1):167-182.
    [15]Davis AP, Burns M. Evaluation of lead concentration in runoff from paintedstructures[J]. Water research,1999,33(13):2949-2958.
    [16]Barnes GL. Dissolution of lead paint in aqueous solutions[J]. Journal of EnvironmentalEngineering,1996,122(7):663-666.
    [17]Monken A. Water pollution control for paint booths[J]. Metal Finishing,2000,98(6):464-471.
    [18]Nicholson FA, Smith SR, Alloway BJ, et al. An inventory of heavy metals inputs toagricultural soils in England and Wales[J]. The Science of the Total Environment,2003,311(1-3):205-219.
    [19]Otero N, Vitoria L, Soler A. Fertilizer characterization: Major, trace and rare earthelements[J]. Applied Geochemistry,2005,20(8):1473-1488.
    [20]Cheung YH, Wong MH. Utilization of animal manures and sewage sludges for growingvegetables[J]. Agricultural Wastes,1983,5(2):63-81.
    [21]Walter I, Martinez F, Cala V. Heavy metal speciation and phytotoxic effects of threerepresentative sewage sludges for agricultural uses[J]. Environmental pollution,2006,139(3):507-514.
    [22]Beldsen P, Barlaz MA, Rooker AP. Present and long-term composition of MSW landfillleachate: a review[J]. Critical Reviews in Environmental Science and Technology,2002,32(4):297-336.
    [23]Fernandez Y, Mara on E, Castrillon L. Removal of Cd and Zn from inorganic industrialwaste leachate by ion exchange[J]. Journal of hazardous materials,2005,126(1-3):169-175.
    [24]常学秀,文传浩,王焕.重金属污染与人体健康[J].云南环境科学,2000,19(001):59-61.
    [25]曲向荣.环境保护概论[M].北京:北京大学出版社,2009:56-94.
    [26]高廷耀,顾国维,周琪.水污染控制工程[M].北京:高等教育出版杜,2007:13-84.
    [27]Liu X, Qi C, Bing T, et al. Specific mercury (II) adsorption by thymine-basedsorbent[J]. Talanta,2009,78(1):253-258.
    [28]Rao RAK, Khan MA, Rehman F. Utilization of Fennel biomass (Foeniculum vulgari) amedicinal herb for the biosorption of Cd(II) from aqueous phase[J]. Chemical EngineeringJournal,2010,156(1):106-113.
    [29]Rodrigues LA, Maschio LJ, da Silva RE. Adsorption of Cr(VI) from aqueous solutionby hydrous zirconium oxide[J]. Journal of Hazardous Materials,2010,173(1-3):630-636.
    [30]任旭红,任旭华.铅污染及其危害[J].中国公共卫生,1999,15(009):839-841.
    [31]Wadanambi L, Dubey B, Townsend T. The leaching of lead from lead-based paint inlandfill environments[J]. Journal of Hazardous Materials,2008,157(1):194-200.
    [32]Rahman MS, Islam MR. Effects of pH on isotherms modeling for Cu (II) ionsadsorption using maple wood sawdust[J]. Chemical Engineering Journal,2009,149(1-3):273-280.
    [33] Mellah A, Chegrouche S. The removal of zinc from aqueous solutions by naturalbentonite[J]. Water Research,1997,31(3):621-629.
    [34]胡海祥.重金属废水治理技术概况及发展方向[J].中国资源综合利用,2008,26(002):22-25.
    [35]张建梅.重金属废水处理技术研究进展(综述)[J].西安联合大学学报,2003,6(002):55-59.
    [36]王小艳.浅议含重金属废水处理技术[J].有色冶金设计与研究,2008,29(006):41-42.
    [37]Aderhold D, Williams CJ, Edyvean RGJ. The removal of heavy-metal ions byseaweeds and their derivatives[J]. Bioresource Technology,1996,58(1):1-6.
    [38]Kongsricharoern N, Polprasert C. Electrochemical precipitation of chromium (Cr6+)from an electroplating wastewater[J]. Water science and technology,1995,31(9):109-117.
    [39]Kongsricharoern N, Polprasert C. Chromium removal by a bipolar electro-chemicalprecipitation process[J]. Water Science and Technology,1996,34(9):109-116.
    [40]Madaeni SS, Mansourpanah Y. COD removal from concentrated wastewater usingmembranes[J]. Filtration&Separation,2003,40(6):40-46.
    [41]Qin JJ, Wai MN, Oo MH. A feasibility study on the treatment and recycling of awastewater from metal plating[J]. Journal of membrane science,2002,208(1-2):213-221.
    [42]Crini G. Recent developments in polysaccharide-based materials used as adsorbents inwastewater treatment[J]. Progress in polymer science,2005,30(1):38-70.
    [43] Solmaz SKA, iistun GE, Birgul A, et al. Treatability studies with chemicalprecipitation and ion exchange for an organized industrial district (OID) effluent in Bursa,Turkey[J]. Desalination,2007,217(1-3):301-312.
    [44]Dabrowski A, Hubicki Z, Podko cielny P, et al. Selective removal of the heavy metalions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere,2004,56(2):91-106.
    [45]Blcher C, Dorda J, Mavrov V. Hybrid flotation-membrane filtration process for theremoval of heavy metal ions from wastewater[J]. Water Research,2003,37(16):4018-4026.
    [46]Phadnis N P. Activated carbons-carbonaceous adsorbents in technology andenvironmental protection [J].Chem. Eng. World,1995,30(2):69-71.
    [47]雒和敏,曹国璞.活性炭对含铅废水吸附特性研究[J].环境工程学报,2010,4(2):373-376.
    [48]王桂仙,张启伟.改性竹炭对含铅废水吸附处理的效果研究[J].广东微量元素科学,2008,15(3):26-29.
    [49]滕曼,付强,贾立明.骨炭对铅的吸附性能研究[J].环境科学与技术,2010,33(3):88-91.
    [50]黄鑫,高乃云,张巧丽.改性活性炭对镉的吸附研究[J].同济大学学报(自然科学版),2008,36(4):508-515.
    [51]裘凯栋,黎维彬.水溶液中六价铬在碳纳米管上的吸附[J].物理化学学报,2006,22(12):1542-1546.
    [52] Xu Yijun, Rosa Arrigo, Liu Xi. Characterization and use of functionalized carbonnanotubes for the adsorption of heavy metal anions [J]. New Carbon Materials,2011,26(1):157-62.
    [53]曾鸣,巩学敏,彭先佳.碳纳米管溶胶对水中微量Cd2+与Cu2+吸附的研究[J].化学工程,2009,37(6):8-11.
    [54]刘泊良,张玉军,王蒲芳.改性碳纳米管对水中铜离子的去除作用[J].应用化工,2011,40(1):68-80.
    [55]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003,24(1):47-49.
    [56]朱丽珺,张金池,宰德欣.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报(自然科学版),2007,31(4):73-76.
    [57]马明广,周敏,蒋煜峰.不溶性腐殖酸对重金属离子的吸附研究[J].安全与环境学报,2006,6(3):68-71.
    [58]贾黎,张自立.腐殖酸对La3+、Nd3+等重金属离子混合体系吸附的研究[J].中国稀土学报,2009,27(6):816-821.
    [59]朱霞萍,白德奎,李锡坤.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-648.
    [60]席永慧,赵红,胡中雄.粉煤灰、粘土、膨润土等对Zn2+的吸附试验研究[J].岩土力学,2005,26(8):1269-1287.
    [61]施惠生,刘艳红.膨润土对重金属离子Pb2+, Zn2+, Cr(VI),Cd2+的吸附性能[J].建筑材料学报,2006,9(5):507-510.
    [62]沈岩柏,朱一民,王忠安.硅藻土对水相中Pb2+的吸附[J].东北大学学报(自然科学版),2003,24(10):981-985.
    [63]朱健,王平,罗文连.硅藻土深度物理改性及对水中Fe3+的吸附性能研究[J].硅酸盐通报,2010,29(6):1290-1298.
    [64]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [65]胡克伟,贾冬艳,颜丽.改性沸石对Zn2+的吸附特性研究[J].中国土壤与肥料,2011,(1):49-52.
    [66]王金明,易发成.浙江天然沸石对Cs+的吸附性能研究及其晶体结构表征[J].硅酸盐通报,2010,29(3):670-675.
    [67]张新艳,王起超,张少庆.巯基功能化沸石吸附Hg2+特征及固化/稳定化含汞废物研究[J].环境科学学报,2009,29(10):2134-2140.
    [68]张宝述,宋海明,王励生. Na型蛭石中2Na+=Pb2+离子交换过程的动力学研究[J].功能材料,2007,38(5):790-794.
    [69]张宝述,宋海明,彭同江. Cu2+、Pb2+、Zn2+离子在工业蛭石上的吸附行为研究[J].中国矿业,2007,16(10):106-113.
    [70]王峰,梁成华,杜丽宇.天然蛭石和沸石吸附铜和锌的特性研究[J].沈阳农业大学学报,2007,38(4):531-534.
    [71]丁振华,冯俊明,王明士.天然氧化铁矿物对铅离子的吸附研究[J].生态环境,2003,12(2):131-134.
    [72]祝春水,孙振亚,龚文琪,等.生物矿化针铁矿吸附废水中铬的实验研究[J].环境科学研究,2003,16(6):57-59.
    [73]罗文倩,魏世强.镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J].农业环境科学学报,2009,28(5):897-902.
    [74]黄承玲,张道勇,潘响亮.向日葵根分泌物对针铁矿吸附Cd2+的抑制效应[J].地理科学,2009,29(3):455-460.
    [75]李浙英,梁剑茹,柏双友.生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J].环境科学学报,2011,31(3):460-467.
    [76]豆小敏,于新,赵蓓.5种氧化铁去除As(V)性能的比较研究[J].环境工程学报,2010,4(9):1989-1994.
    [77]侯明,刘振国.接枝壳聚糖对铅、镉吸附行为研究及应用[J].分析试验室,2006,25(10):1-6.
    [78]宋庆平,王崇侠,高建纲. N-羧甲基壳聚糖的制备及其对重金属离子吸附研究[J].离子交换与吸附,2010,26(6):559-564.
    [79]徐慧,仵彦卿,刘预.新型壳聚糖用于地下水中Pb2+的吸附性能研究[J].装备环境工程,2010,7(5):42-46.
    [80]谢志英,肖化云,王光辉.交联壳聚糖对铀的吸附研究[J].环境工程学报,2010,4(8):1749-1752.
    [81]陈中兰,曾艳.多胺型稻草纤维素球的制备及其对水体中Zn2+的吸附性能[J].应用化学,2006,23(10):1116-1119.
    [82]黄金阳,刘明华.新型纤维素螯合吸附剂对Cr(VI)的吸附研究[J].纤维素科学与技术,2010,18(1):7-11.
    [83]林春香,詹怀宇,刘明华.球形纤维素吸附剂对Cu2+的吸附动力学与热力学研究[J].离子交换与吸附,2010,26(3):226-238.
    [84]何莼,李忠,赵桢霞.低成本木质素吸附剂对废水中Pb2+吸附性能的研究[J].离子交换与吸附,2006,22(6):481-488.
    [85]谢燕,曾祥钦.巯基木质素的制备及其对重金属离子的吸附[J].水处理技术,2006,32(6):73-74.
    [86]袁怀波,曹树青,张宁.交联羧甲基木薯淀粉对Pb2+的吸附特性研究[J].安全与环境学报,2008,8(4):42-45.
    [87]周睿,曹龙奎,包鸿慧.交联羧甲基玉米淀粉对水溶液中铅离子吸附性能的优化研究[J].环境工程学报,2009,3(10):1793-1799.
    [88]苏秀霞,杨祥龙,诸晓峰,等.新型淀粉微球对Cu2+、Cr3+和Pb2+的吸附机理研究[J].环境工程学报,2010,4(3):492-496.
    [89]Yekta G ksungur, Sibel üren, Ulgar Güvenc. Biosorption of cadmium and lead ions byethanol treated aste baker’s yeast biomass [J]. Bioresource Technology,2005,96(1):103-109.
    [90]董新姣,潘瑞通,林宣兴.无花果曲霉对铅的吸附研究[J].四川环境,2002,21(1):12-16.
    [91]Liping Deng, Yingying Su, Hua Su, et al. Biosorption of copper(II) and lead(II) fromaqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kineticsand environmental effects [J].Adsorption,2006,12(4):267-277.
    [92]Pingxin Sheng, Yenpeng Ting, J. Paul Chen, et al. Sorption of lead, copper, cadmium,zinc, and nickel by marine algal biomass: characterization of biosorptive capacity andinvestigation of mechanisms[J].Journal of colloid and Interface Science,2004,275(1):131-141.
    [93]W.S. Wan Ngah, M. A. K. M Hanafiah. Adsorption of copper on rubber (Heveabrasiliensis) leaf powder:kinetic, equilibrium and thermodynamic studies[J]. BiochemicalEngineering Journal,2008,39(3):521-530.
    [94]ZheXian Xuan, Yanru Tang, Xiaomin Li, etal. Study on the equilibrium, kinetics andisotherm of biosorption of lead ions onto pretreated chemically modified orange peel[J].Biochemical Engineering Journal,2006,31(2):160-164.
    [95]Kailas L. Wasewar, Mohammad Atif, B. Prasad, et al. Batch adsorption of zinc on teafactory waste [J].Desalination,2009,244(1-3):66-71.
    [96]Qingge Feng, Qingyu Lin, Fuzhong Gong, et al. Adsorption of lead and mercury byrice husk ash [J].Journal of Colloid and Interface Science,2004,278(1):1-8.
    [97]叶林顺,刘慧璇,谢咏梅,等.改性稻草吸附铜离子的动力学机理[J].环境科学与技术,2006,29(8):28-30.
    [98]杨明平,傅勇坚.锰矿尾渣对Cu2+和Ni2+的吸附性能研究[J].材料保护,2007,40(3):65-67.
    [99]檀竹红,郑水林,张娟.石棉尾矿酸浸渣对废水中Zn2+的吸附性能研究[J].非金属矿,2007,30(6):44-52.
    [100]羊依金,李志章,张雪乔,等.坡缕石-钢渣颗粒吸附剂处理含铜离子废水的研究[J].工业水处理,2006,26(11):31-34.
    [101]陈芳艳,钟宇,唐玉斌.炉渣去除废水中六价铬[J].化工环保,2008,28(3):209-213.
    [102]兰叶,王毓华,李艳.改性铝土矿浮选尾矿处理含Cr(Ⅵ)废水的试验研究[J].矿业工程,2006,26(6):43-46.
    [103]张道勇,潘响亮,穆桂金,等.铝渣吸附去除水中锑的研究[J].水处理技术,2008,34(10):34-37.
    [104]袁峥, Grant Douglas, Laura Wendling,等.钢铁、钛和铝工业废渣去除水中重金属和酸性中的作用[J].南昌大学学报(工科版),2010,32(2):168-172.
    [105]Mihaela Mureseanu, Aurora Reiss, Ioan Stefanescu, Elena David, VioricaParvulescu Gilbert Renard, Vasile Hulea. Modified SBA-15mesoporous silica for heavymetal ions remediation[J]. Chemosphere,2008,73(9):1499-1504.
    [106]Sing K.S.W., Everett D.H. Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity(Recommendations1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [107]Direnzo F., Cambon H., Dutartre R.. Synthesis and Redox Properties of MCM-48Containing Copper and Zinc[J]. Microporous and Mesoporous Materials,1997,10(8):2-286.
    [108]Yanagisawa T., Shimizu T., Kuroda K., Kato C. The Preparation ofAlkyltriinethylaininonium-Kaneinite Complexes and Their Conversion to MicroporousMaterials[J]. Chemical Society of Japan,1990,63(4):988-992.
    [109]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartult, J. S. Beck. Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712.
    [110]J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,K. D.Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard. A new family of mesoporousmolecular sieves prepared with liquid crystal template [J]. Journal of the AmericanChemical Society,1992,114(27):10834-10843.
    [111]Dongyuan Zhao, Jianglin Feng, Qisheng Huo,Nicholas Melosh, Glenn H. Fredrickson,Bradley F. Chmelka, Galen D. Stucky. Triblock Copolymer Syntheses of MesoporousSilica with Periodic50to300Angstrom Pores[J]. Science,1998,279:548-552.
    [112]Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Bradley F. Chmelka and Galen D.Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric SurfactantSytheses of Highly Ordered,Hydrothermally Stable,Mesoporous Silica Structures[J].Journal of the American Chemical Society,1998,120(24):6024-6036.
    [113]Monnier A., Schuth F., Huo Q., Kumar D., Margolese D., Maxwell R., Stucky G.,Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B.F. Cooperative Formationof Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science,1993,261:1299-1303.
    [114]Carlsson A., Kaneda M., Sakamoto Y., Terasaki O., Ryoo R., Joo S. The Structure ofMCM-48Determined by Electron Crystallograp[J]. Journal of Electron Microscopy.1999,48(6):795-802.
    [115]Sakamoto Y., Kaneda M., Terasaki O., Zhao D., Kim J., Stucky G., Shim H., Ryoo R.Direct Imaging of the Pores and Cages of Three-dimensional Mesoporous Materials[J].Nature,2000,408:449-453.
    [116]Gilman E. S. Toombes, Adam C. Finnefrock, Mark W. Tate, Ralph Ulrich, UlrichWiesner, Sol M. Gruner. A Re-Evaluation of the Morphology of a Bicontinuous BlockCopolymer-Ceramic Material[J]. Macromolecules,2007,40(25):8974-8982.
    [117]Huo Q., Margolese D., Stucky G. Surfactant Control of Phases in the Synthesis ofMesoporous Silica-Based Materials[J]. Chemical of Materials,1996,8(5):1147-1160.
    [118]Huo Q., Leon R., Petroff P., Stucky G. Mesostructure Design with Gemini Surfactants:Supercage Formation in a Three-Dimensional Hexagonal Array[J]. Science,1995,268:1324-1327.
    [119]Yu C., Yu Y., Zhao D. Highly Ordered Large Caged Cubic Mesoporous SilicaStructures Templated by Triblock PEO-PPO-PEO Copolymer[J]. ChemicalCommunications,2000(7),575-576.
    [120]Yu, C.,Yu, Y.; Miao, L., Zhao, D. Highly Ordered Mesoporous Silica StructuresTemplated by Poly (butylene oxide) Segment di-and tri-block Copolymers[J]. Microporousand mesoporous materials,2001,44-45:65-72.
    [121]Zhou W., Hunter H., Wright P., Ge Q., Thomas J. Imaging the Pore Structure andPolytypic Intergrowths in Mesoporous Silica[J]. The Journal of Physical Chemistry B,1998,102(36):6933-6936.
    [122]Matos J., Kruk M., Mercuri L., Jaroniec M., Zhao L., Kamiyama T., Terasaki O.,Pinnavaia T., Liu Y. Impact of Ionic Liquid Physical Properties on Lipase Activity andStability[J]. Journal of the American Chemical Society,2003,125(14):4125-4231.
    [123]Che S., Liu Z., Ohsuma T., Sakamoto K., Terasaki O., Tatsumi T. Synthesis andCharacterization of Mesoporous Silica with Chiral structure[J], Nature,2004,429:281-284.
    [124]Tanev P.T., Pinnavaia T.J. A Neutral Templating Route to Mesoporous MolecularSieves. Science[J],1995,267:865-867.
    [125]Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of Mesoporous MolecularSieves by Nonionic Polyethylene Oxide Surfactants[J]. Science1995,269:1242-1244.
    [126]Edler K.J., White J.W. Room-temperature Formation of Molecular Sieve MCM-41[J].Journal of the Chemical Society, Chemical Communications,1995(2):155-156.
    [127]Chatterjee M., Iwasaki T., Hayashi H., Onoclera Y., Ebina T. Room-temperatureFormation of Thermally Stable Aluminium-rich Mesoporous MCM-41[J]. CatalysisLetters,1998,52(1-2):21-23.
    [128]Mingtao Run, Sizhu Wu, Dayu Zhang, Gang Wu. Melting behaviors and isothermalcrystallization kinetics of poly(ethylene terephthalate)/mesoporous molecular sievecomposite[J]. Polymer,2005,46(14):5308-5316.
    [129]Xu L., Wang G.W., Wei Y.X., Qi Y., Liu X.C., Bao X.H. Study on Synthesis ofMesoporous Molecular Sieve MCM-41II.Micro Wave SynthesisMethod[J]. Chinese Journal of Catalysis,1999,20(3):251-255.
    [130]Run M.T., Wu S.Z.,Wu G. Ultrasonic Synthesis of Mesoporous Molecular Sieve[J].Microporous and mesoporous materials,2004.74(1):37-47.
    [131]Feng X., Fryxell G.E., Wang L.Q., Kim A.Y., Liu J., Kemner K.M.,FunctionalizedMonolayrts on Ordered Mesoporous Supports[J]. Science,1997,276:923-926.
    [132]Huo Q., Margolese D.L, Stucky G.D., Feng P., Gier T.E., Sieger P. GeneralizedSynthesis of Periodic Surfactant/inorganic Composite Materials[J]. Nature,1994,368:317-321.
    [133]Tanev P.T., Chibwe M., Pinnavaia T.J., Titanium-containing MesoporousMolecular Sieves for Catalytic Oxidation of Aromatic Compounds. Nature,1994,368:321-323.
    [134]Tanev P.T., Pinnavaia T.J., A Neutral Templating Route to Mesporous MolecularSieves[J]. Science,1995,267:865-867.
    [135]Bagshaw S.A., Pinnavaia T.J. Mesoporous Alumina Molecular Sieves[J]. Science,1995,268:1102-1105.
    [136]Clark, J. Macquarrie. Chemically Modified Catalysis of Liquid Phase OrganicReactions using Mesoporous Inorganic Solids. Chemical Communications[J],1998(8):853-860.
    [137]Wang Y D,Ma C L,Sun X D,Li H D. Synthesis of mesostructured SnO2with CTABand hydrous tin chloride[J]. Materials Letters,2001,51(4):285-288.32.
    [138]Holland B.T., Isbester P.K., Blanford C.F., Munson E.J., Steinet A. Synthesis ofOrdered Aluminophosphate and Galloaluminophosphate Mesoporous Materials withAnion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts asPrecursors[J]. Journal of the American Chemical Society,1997,119(29):6796-6803.
    [139]Yang P., Zhao D., Margolese D. L, Chmelka B.F., Stucky G.D. Block CopolymerTemplating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths andSemicrystalline Framework[J]. Chemistry of Materials,1999,11:2813-2826.
    [140]Ryoo R., Joo S.H., Kim J.M. Energetically Favored Formation of MCM-48fromCationic-Neutral Surfactant Mixtures[J]. The Journal of Physical Chemistry B,1999,103(35):7435-7440.
    [141]Kruk M., Jaroniec M., Ryoo R., Joo S.H., Characterization of MCM-48Silicas withTailored Pore Sizes Synthesized via a Highly Efficient Procedure[J]. Chemistry ofMaterials,2000,12(5):1414-1421.
    [142] He J., Yang X.B., Evans D.G., New Methods to Remove Organic Templates fromPorous Materials[J]. Materials Chemistry and Physics,2003,77(1):270-275.
    [143]Yang C., Zibrowius B., Schmidt W., Schuth F. Stepwise Removal of the CopolymerTemplate from Mesopores and Micropores in SBA-15[J].Chemistry of Materials,2004,16(15):2918-2925.
    [144]Mereteia E., Halasza J., Mehn D., Lewandowski W. Structural Consequences of MildOxidative Template Removal in the Synthesis of Modified MCM-41Silicates[J]. Journalof Molecular Structure,2003,651-653:323-330.
    [145]Cassiers K., Voort P. Van der, Vasant E.F. Synthesis of Stable and Directly UsableHexagonal Mesoporous Silica by Efficient Amine Extraction in Acidified Water[J].Chemical Communications,2000,(24):2489-2490.
    [146]Firouzi A., Atef F., Oertli A.G., Stucky G.D. Chmelka B.F. Alkaline LyotropicSilicate-Surfactant Liquid Crystals[J]. Journal of the American Chemical Society,1997,119(15):3596-3610.
    [147]Chen X., Ding G., Chen H., Li Q. A Novel Water-soluble Nanoparticles ofHypocrellin B and Their Interaction with a Model Protein: Gphycocyanin[J]. Science inChina Series B: Chemistry1997,40:278-281.
    [148]Chen C.Y., Burkett S.L., Li H.X., Davis M.E. Studies on Ordered MesoporousMaterials III. Comparison of MCM-41to Mesoporous Materials Derived from Kanemite[J].Microporous Materials,1995,4(1):1-20.
    [149]Firouzi A., Kumar D., Bull L. M., Besier T., Huo Q., Walker S.A., Stucky G.D.Chmelka B.F., Cooperative Organization of Inorganic-surfactant and BiomimeticAssemblies[J]. Science,1995,267:1138-1143.
    [150]C YU, JIE FAN, B TIAN, D ZHAO, GD STUCKY. High-yield synthesis of periodicmesoporous silica rods and their replication to mesoporous carbon rods. Advancedmaterials.2002,14(23):1742-1745.
    [151]徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社,2004:616.
    [152]Moller K, Bein T. Internal modification of ordered mesoporous hosts[J]. Studies inSurface Science and Catalysis,1998,117:53-64.
    [153]Price P.M., Clark J.H., Macquarrie D.J. Modified silicas for clean technology[J].Journal of the Chemical Society, Dalton Transactions,2000,2(2):101-110.
    [154]Ishikawa T., Matsuda M. Surface silanolgroups of mesoporous silica FSM-16[J].Journal of the Chemical Society, Faraday Transactions,1996,92(11):1985-1990.
    [155]Jentys A., Kleestorfer K., Vinek H.. Concen of surface hydroxyl groups onMCM-41[J]. Microporous and mesoporous materials,1999,27(2-3):321-328.
    [156]Fryxell G.E., Liu J. Adsorption on silica surfaces[M].Papierer E: Marcel Dekker, NewYork,2000:122-178.
    [157]Butterworth A.J., Clark J.H., Lamber A. Environmentally friendly catalysis of liquidphase organic reaction using chemically modified mesoporous materials[J]. Studies inSurface Science and Catalysis,1997,108(8):523-530.
    [158]Clark J.H., Macuattie D.J. Catalysis of liquid phase organic reactions using chemicallymodified mesoporous inorganic solid[J]. Chemical Communications,1998,(8):853-860.
    [159]Anwander R., Nagl I., Widenmeyer M. et al. Surface characterization andfunctionalization of MCM-41silicas via silazane silylation.[J]. The Journal of PhysicalChemistry B,2000,104(15),3532-3544.
    [160]Lim M.H., Blanford C.F., Stein A. Synthesis of ordered microporous silicates withorganosulfur surface groups and their applications as solid acid catalysts[J]. Chemistry ofMaterials,1998,10(2):467-470.
    [161]Yoshitake H., Yokoi T., Tatsumi T. Adsorption of Chromate and Arsenate byAmino-Functionalized MCM-41and SBA-1[J]. Chemistry of Materials,2001,14(11):4603-4610.
    [162]Margolese D., Melero J.A. et al. Direct syntheses of ordered SBA-15mesoporoussilica containing sulfonic acid groups[J]. Chemistry of Materials,2000,12(8):2448-2459.
    [163]Wang X., Liu K S.K. et al. Preparation of ordered large pore SBA-15silicafunctionalized with aminopropyl-group through one-pot synthesis[J].ChemicalCommunications,2004,2762-2763.
    [164]Yang Hong,Xu Ran,Xue Xiaoming et a1.Hybrid surfactant templated mesoporoussilica formed in ethanol and its application for heavy metal removal[J].Journal ofHazardous Materials,2008,152(2):690-698.
    [165]Aguado J,Arsuaga J M,Arencibia A,et a1.Aqueous heavy metals removal byadsorption on amine-functionalized mesoporous silica[J].Journal of Hazardous Materials,2009,163(1):213-221.
    [166]Xue Xiaoming,Li Fengting.Removal of Cu(II)from aqueous solution by adsorptionof unfunctionalized SBA-16mesoporous silica[J].Microporous and Mesoporous Materials,2008,116(1/2/3):116-122.
    [167]Mureseanu M,Reiss A,Stefaneseu I,et a1.Modified SBA-15mesoporous silica forheavy metal ions remediation[J].Chemosphere,2008,73(9):1499-1504.
    [168]Algarra M,Jimenez M V,Rodriguez C,et a1.Heavy metals removal fromelectroplating wastewater by aminopropyl-Si MCM-41[J].Chemosphere,2005,59(6):779-786.
    [169]Lee B,Kim Y,Lee H,et a1.Synthesis offunetionalized porous silicas via templatingmethod as heavy metal ion adsorbents:the introduction of surface hydrophilicity onto thesurface of adsorbents[J].Microporous and Mesoporous Materials,2001,50(1):77-90.
    [170]Jiang Yijun,Gao Qiuming,Yu Huaguang,et a1.Intensively competitive adsorptionfor heavy metal ions by PAMAM-SBA-15and EDTA-PAMAM-SBA-15inorganic-organichybrid materials[J].Mieroporous and Mesoporous Materials,2007,103(1/2/3):316-324.
    [171]Burke A M,Hanrahan J P,Healyd D A,et a1.Large pore bifunctionalised mesoporoussilica for metal ion pollution treatment[J].Journal of Hazardous Materials,2009,164(1):229-234.
    [172]Zhang L., Zhang W. et al. A New Thioether Functionalized Organic-inorganicMesoporous Composite as a Highly Selective and Capacious Hg2+Adsorbent[J]. ChemicalCommunications,2003,(2):210-211.
    [173] A. M. Liu, K. Hidajat, S. Kawi, D. Y. Zhao. A new class of hybrid mesoporousmaterials with functionalized organic monolayers for selective adsorption of heavy metalions[J]. Chemical Communications,2000,61(14-15):1145-1146.
    [174]Kang T., Park Y., Choi K. Ordered Mesoporous silica(SBA-15)derivatized withimidazole-containing functionalities as a selective adsorbent of precious metal ions[J].Journal of Materials Chemistry,2004,14(6):1043-1050.
    [175]N.K. Srivastava, C.B. Majumder. Novel biofiltration methods for the treatment ofheavy metals from industrial wastewater[J]. Journal of hazardous materials,2008,151(1):1-8.
    [176]World Health Organization, Guidelines for drinking water quality:Recommendations-Addendum, vol.1,3rd ed.,2008.
    [177]A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar. Removal of heavymetal ions from aqueous solutions using carbon aerogel as an adsorbent[J]. Journal ofhazardous materials,2005,122(1-2)161-170.
    [178]M.C. Basso, E.G. Cerrella, A.L. Cukierman. Lignocellulosic Materials as PotentialBiosorbents of Trace Toxic Metals from Wastewater[J]. Industrial&EngineeringChemistry Research,2002,41(15):3580-3585.
    [179]H. Parab, S. Joshi, N. Shenoy, R. Verma, A. Lali, M. Sudersanan. Uranium removalfrom aqueous solution by coir pith: equilibrium and kinetic studies[J]. Bioresourcetechnology,2005,96(11):1241-1248..
    [180]Mohammad Ajmal, Rifaqat Ali Khan Rao, Rais Ahmad, Moonis Ali Khan.Adsorptionstudies on Parthenium hysterophorous weed: Removal and recovery of Cd(II) fromwastewater[J]. Journal of hazardous materials,2005,135(1-3):242-248
    [181]M. Sciban, M. Klasmja, B. Skrbic. Modified softwood sawdust as adsorbent of heavymetal ions from water[J]. Journal of hazardous materials,2006,136(2):266-271.
    [182]T.S. Anirudhan, L. Divya, M. Ramachandran. Mercury(II) removal from aqueoussolutions and wastewaters using a novel cation exchanger derived from coconut coir pithand its recovery[J]. Journal of hazardous materials,2008,157(2-3):620-627.
    [183]R.T. Yang. Adsorbents: Fundamentals and Applications. Wiley-Interscience,2003.
    [184]Yu Ping Zhang, Se Hee Lee, Kakarla Raghava Reddy, Anantha IyengarGopalan, Kwang Pill Lee. Synthesis and characterization of core-shell SiO2nanoparticles/poly (3-aminophenylboronic acid) composites[J]. Journal of AppliedPolymer Science,2007,104(4):2743-2750.
    [185]V. Antoschuk, M. Jaroniec.1-Allyl-3-propylthiourea modified mesoporous silica formercury removal[J]. Chemical Communications,2002,258-259.
    [186]K. Yee Ho, G. McKay, K. Lun Yeung. Selective adsorbents from orderedmesoporous silica[J]. Langmuir,2003,19(7):3019-3024.
    [187]L. Zhang, C. Yu, W. Zhao, H. Chen, L. Li, J. Shi. Preparation of multi-amine-graftedmesoporous silicas and their application to heavy metal ions adsorption[J]. Journal ofNon-Crystalline Solids,2007,353(44-46):4055-4061.
    [188]A. Walkarius, C. Delacote. Rate of access to the binding sites in organically modifiedsilicates.3. Effect of structure and density of functional groups in mesoporous solidsobtained by the co-condensation route[J]. Chemistry of Materials,2003,15(22):4181–4192.
    [189]A. Stein, B.J. Melde, R.C. Schroden. Hybrid inorganic–organic mesoporoussilicates-nanoscopic reactors coming of age[J]. Advanced Materials,2000,12:1403-1419.
    [190]A. Vinu, K.Z. Hossain, K. Ariga. Recent advances in functionalization of mesoporoussilica[J]. Journal of Nanoscience and Nanotechnology.2005,5(3):347-371.
    [191]Lina Wang, Tao Qi, Yi Zhang. Novel organic-inorganic hybrid mesoporous materialsfor boron adsorption[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2006,275(1-3):73-78.
    [192]D. Perez-Quintanilla, I. Del Hierro, M. Fajardo, I. Sierra. Mesoporous silicafunctionalized with2-mercaptopyridine: synthesis, characterization and employment forHg(II) adsorption[J]. Microporous and Mesoporous Materials,2006,89(1-3):58-68.
    [193]Z. Gao, L. Wang, T. Qi, J. Chu, Y. Zhang. Synthesis, characterization, and cadmium(II)uptake of iminodiacetic acid-modified mesoporous SBA-15[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,304(1-3):77-81.
    [194]S.A. Abdel-Latif, H.B. Hassib, Y.M. Issa. Studies on some salicylaldehyde Schiff basederivatives and their complexes with Cr(III), Mn(II), Fe(II), Ni(II) and Cu(II)[J].Spectrochim Acta A Mol Biomol Spectroscope,2007,67(3-4):950-957.
    [195]L.Lagadic. Schiff base chelate-functionalized organoclays[J]. Microporous andMesoporous Materials,2006,95(1-3):226-233.
    [196]P. Sutra, D. Brunel. Preparation of MCM-41type silica-bound manganese(III)Schiff-base[J]. Chemical Communications,1996,(21):2485-2486.
    [197]U.G. Singh, R.T. Williams, K.R. Hallam, G.C. Allen. Exploring the distribution ofcopper-Schiff base complex covalently anchored onto the surface of mesoporous MCM-41silica[J]. Journal of Solid State Chemistry,2005,178(11):3405-3413.
    [198]S. Kumar, D. N. Dhar, Applications of metalcomplexes of Schiff bases-A review[J].Journal of Scientific&Industrial Research,2009,68:181-187.
    [199]W. K. Dong, X. Chen, S. J. Wang. Synthesis and Reactivity in Inorganic andMetal-Organic Chemistry[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, andNano-Metal Chemistry,2007,37:229-233.
    [200]R. K. Agarwal, L. Singly D. K. Shanna, R. Singh. Synthesis, spectral and thermalinvestigations of some oxovanadium(IV) complexes of hydrazones of isonicotinic acidhydrazide[J].Turkish Journal of Chemistry,2005,29(3):309-316.
    [201]M. Sebastien, B. Christophe, L. Younes. Structure-activity relationships andmechanism of action of antitumor bis8-hydroxyquinoline substituted benzylamines[J].European Journal of Medicinal Chemistry,2010,45(2):623-638.
    [202]A. P. Mishra and Monika Soni. Synthesis, Structural, and Biological Studies of SomeSchiff Bases and Their Metal Complexes[J]. Metal-Based Drugs,2008,2008:875410-875417.
    [203]Yong-chun Liu,Zheng-yin Yang, Crystal structures, antioxidation and DNA bindingproperties of Eu(III) complexes with Schiff-base ligands derived from8-hydroxyquinoline-2-carboxyaldehyde and three aroylhydrazine[J], Journal of InorganicBiochemistry,2009,103(7):1014-1022.
    [204]Haiyuan Zhang,Ronald Thomas E, David Oupicky,Fangyu Peng. Synthesisand characterization of new copper thiosemicarbazone complexes with an ONNSquadridentate system: cell growth inhibition, S-phase cell cycle arrest andproapoptotic activities on cisplatin-resistant neuroblastoma cells[J]. Journal of biologicalinorganic chemistry JBIC a publication of the Society of Biological Inorganic Chemistry,2008,13(1):47-55.
    [205]刘绍威,周柞万,李毕忠.中华人民共和国化工行业标准HG/T3794-2005无机抗菌剂-性能及评价[S].北京:化学工业出版社,2005.
    [206]Christopher D. Fjell, Havard Jenssen,Kai Hilpert,Warren A. Cheung,NellyPante,Robert E. W. Hancock,Artem Cherkasov. Identification of Novel AntibacterialPeptides by Chemoinformatics and Machine Learning[J]. Journal of Medicinal Chemistry,2009,52(7):2006-2015.
    [207]M. A. Neelakantan, M. Sundaram, M. Sivasankaran Nair. Solution Equilibria of Ni(II),Cu(II), and Zn(II) Complexes Involving Pyridoxine and Imidazole Containing Ligands: pHMetric, Spectral, Electrochemical, and Biological Studies. Journal of Chemical&Engineering Data[J].2011,56(5):2527-2535.
    [208]丘利,胡玉和. X射线衍射技术及设备[M].北京:冶金工业出版社,1998:25-141.
    [209]Baerlocher C, McCusker L B. Practical Aspects Power Diffraction Data-analysis[J].Studies in Surface Science and Catalysis,1994,85:391-428.
    [210]Mercier L, Pinnavaia T J. Access in mesoporous materials: Advantages of a uniformpore structure in the design of a heavy metal ion adsorbent for environmentalremediation[J]. Advanced Materials,1997,9(6):500-503
    [211]Wang,Ye,Noguchi,M,Takahashi,Y. Synthesis of SBA-15with different pore sizes andthe utilization as supports of high loading of cobalt catalysts s[J]. Catalysis Today,2001,68:3-9.
    [212]White, L. D., Tripp, C. P. Reaction of (3-Aminopropyl)dimethylethoxysilane withAmine Catalysts on Silica Surfaces[J]. Journal of Colloid and Interface Science,2000,232(2):400-407.
    [213]Walcarius, A.; Etienne, M.; Lebeau, B. Rate of Access to the Binding Sites inOrganically Modified Silicates.2. Ordered Mesoporous Silicas Grafted with Amine orThiol Groups[J]. Chemistry of Materials,2003,15(11):2161-2173.
    [214]Melero, J. A.; Stucky, G. D.; Grieken, R.; Morales, G. J. Direct syntheses of orderedSBA-15mesoporous materials containing arenesulfonic acid groups[J]. Journal of MaterialsChemistry,2002,12(6):1664-1670.
    [215]Choi, D.; Yang, S. J. Effect of two-step sol–gel reaction on the mesoporous silicastructure[J]. Journal of Colloid and Interface Science,2003,261(1):127-132.
    [216] Floquet N, Coulomb J P, Weber G, et al. Structural Signatures of Type Ⅳ IsothermSteps: Sorption of Trichloroethene, Tetrachloroethene, and Benzene in Silicalite-I[J]. TheJournal of. Physical Chemistry B,2003,107(3):685-693.
    [217]Gallo J M R, Bisio C, Gatti G, et al. Physicochemical Characterization and SurfaceAcid Properties of Mesoporous [Al]-SBA-15Obtained by Direct Synthesis[J]. Langmuir,2010,26(8):5791-5800.
    [218]M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo. Characterization of the porous structure ofSBA-15[J]. Chemistry of Materials.2000,12(7):1961-1968.
    [219]A. Galarneau, H. Cambon, F. Di Renzo, F. Fajula. True Microporosity and SurfaceArea of Mesoporous SBA-15Silicas as a Function of Synthesis Temperature[J]. Langmuir,2001,17(26):8328-8335.
    [220]Espinosa, M., Pacheco, S., Rodriguez, R. Synthesis and characterization ofNH2-porphyrins covalently immobilized on modified-SBA-15[J]. Journal ofNon-Crystalline Solids,353(26):2573-2581.
    [221]Llusar, M., Monros, G., Roux, C., Pozzo, J. L., Sanchez, C. One-pot synthesis ofphenyl-and amine-functionalized silica fibers through the use of anthracenic andphenazinic organogelators[J]. Journal of Materials Chemistry,2003,13(10),2505-2514.
    [222]Wang, Y. Q., Yang, C. M., Zibrowius, B., Spliethoff, B., Linden, M., Schu¨th, F.Directing the Formation of Vinyl-Functionalized Silica to the Hexagonal SBA-15orLarge-Pore Ia3d Structure[J]. Chemistry of Materials,2003,15(26):5029-5035.
    [223]Simon, P. F. W., Ulrich, R., Spiess, H. W., Wiesner, U. Block copolymer-ceramichybrid materials from organically modified ceramic precursors[J]. Chemistry of Materials,2001,13,(10):3464-3486.
    [224]Bozhi Tian, Xiaoying Liu, Chengzhong Yu, Feng Gao, Qian Luo, Songhai Xie, BoTu, Dongyuan Zhao. Microwave assisted template removal of siliceous porous materials[J]. Chemical Communications,2002,(11):1186-1187.
    [225]Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnummoss peat[J]. Water Research,2000,34(3):735-742.
    [226]Lorenc Grabow ska E, Gryglew icz G. Adsorption of lignite-derived humic acids oncoal-based mesoporous activated carbons[J]. Journal of colloid and Interface Science,2005,284(2):416-423.
    [227]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985:156-168.
    [228]李晖.配位化学[M].北京:化学工业出版社,2005:239-263.
    [229] Gustafsson, J. P. Visual MINTEQ: department of land and water resourcesengineering (ver.3.0), The Royal Institute of Technology, Sweden. Available at:http://www.lwr.kth.se/English/OurSoftware/vminteq/Accessed August10,2011.
    [230]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J].Journal of the American Chemical Society,1918,40(9):1361-1403.
    [231]Freundlich H. über die adsorption in l sungen [J]. Zeitschrift für PhysikalischeChemie,1906,57(A):385-470.
    [232]Tsai W T, Chang Y M, Lai C W, et al. Adsorption of basic dyes in aqueous solution byclay adsorbent from regenerated bleaching earth [J]. Applied clay science,2005,29(2):149-154.
    [233] D.F. Shriver, P.W. Atkins, C.H. Langford. Inorganic Chemistry[M]. Oxford, OxfordUniversity Press,1990.
    [234]Babel, S., Kurniawan, T.A. Low-cost adsorbent for heavy metals uptake fromcontaminated water: a review[J]. Journal of Hazardous Materials,2003,97(1~3):219–243.
    [235]O’Connell, D.W., Birkinshaw, C., O’Dwyer, T.F. Heavy metal adsorbents preparedfrom the modification of cellulose: a review[J]. Bioresource Technology,2008,99(15):6709–6724.
    [236]Lee, B., Kim, Y., Lee, H., Yi, J. Synthesis of functionalized porous silicas viatemplating method as heavy metal ion adsorbents: the introduction of surfacehydrophylicity onto the surface of adsorbents[J]. Microporous and Mesoporous Materials,2001,50(1):77–90.
    [237]A. Calvo, M. Joselevich, G.J.A.A. Soler-Illia, F.J. Williams. Chemical reactivity ofamino-functionalized mesoporous silica thin films obtained by co-condensation andpost-grafting routes[J]. Microporous and Mesoporous Materials,2009,121(1-3):67-72.
    [238]C.C. Chusuei, M.A. Brookshier, D.W. Goodman. Correlation of relative XPS shakeupintensity with CuO particle size[J]. Langmuir,1999,15(8):2806–2808.
    [239]Cooney T E. Bactericidal activity of copper and noncopper paints [J]. InfectControl Hosp Epidemiol,1995,16:444-450.
    [240]Dollwet H H A, Sorenson J R J. Historic uses of copper compounds inmedicine [J]. Trace Elements in Medicine,2001,2:80-87.
    [241]Ahmed Z, Idowu B D, Beown R A. Stabilization of fibronectin mats withmicromolar concentrations of copper [J]. Biomaterials,1999,20:201-209.
    [242]S. M. Zhai, L. Yang, Q. Z. Cui. Tumor cellular proteasomc inhibition and growthsuppression by8-hydroxyquinoline and clioquinol requires their capabilities to bindcopper and transport copper into cells [J]. Journal of Biological Inorganic Chemistry2010,15(2):259-269.
    [243]Kesten S J, Johnson J, Werbel L M. Synthesis and antimalarialeffects of4-[(7-chloro-4-quinolinyl)amino]-2-[(diethylamino)methyl]-6-alkylphenolsand their N. omega.-oxides[J]. Journal of Medicinal Chemistry,1987,30(5):906-911.
    [244]Tianzhi Yu, Guangnong Lu, Lan Yan, Rudong Yang. Synthesis, Characterization, andFluorescence Studies of a Novel Schiff Base Ligand and Its Zn(II), Ni(II), Co(II), Cu(II)Complexes [J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,2003,33(9):1623-1633.
    [245]F. Artizzu, P. Deplano. Structure and Emission Properties of Er3Q9(Q=B-Quinolinolate)[J]. Inorganic Chemistry,2005,44(4):840-842.
    [246]M. Sebastien, B. Christophe, L. Younes, Structure-activity relationships andmechanism oaction of antitumor bis8-hydroxyquinoline substituted benzylamines [J].European Journal of Medicinal Chemistry,2010,45(2):623-638.
    [247]S. Manabu, A. Masaharu, S. K et al. Modulating tluorenscence of8-quinolinolatocompounds by functional groups[J]. A theoretical study. Applied Physics Letters,2001,79(15):2348-2350.
    [248]F. Faridbod, M. R. Ganjali, R. Dinarvand, P. Norouzi, S. Riahi, Schiffs Bases andCrown Ethers as Supramolecular Sensing Materials in the Construction of PotentiometricMembrane Sensors[J]. Sensors,2008,8:1645-1703.
    [249]G.R. Clemo, R. Howe.5-Forrnyl-8-hydrozy quinoline[J]. Journal of Chemical Society,1955:3552-3553.
    [250]Wang, Hongsu;Huang, Jiahui;Wu, Shujie;Xu, Chen;Xing, Lihong;Xu, Ling;Kan, Qiubin,Design and synthesis of Alq3-functionalized SBA-15mesoporous material[J].Materials Letters,2006,60(21-22):2662-2665.
    [251]Garg VK, Gupta R, Yadav AB, et al. Dye removal from aqueous solution byadsorption on treated sawdust[J]. Bioresource Technology,2003,89(2):121-124.
    [252]Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution[J]. Journal ofthe Sanitary Engineering Division, American Society of Civil Engineers,1963,89(17):31-60.
    [253]Rodriguez M, Garcia A. Competitive retention of lead and cadmium on an agriculturalsoil [J]. Environmental Monitoring and Assessment,2003,89(2):165-177.
    [254] Li N, Bai R B, Liu C K. Enhanced and selective Adsorption of Mercury Ions onChitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer RadicalPolymerization [J]. Langmuir,2005,21(25):11780-11787
    [255]Dai S, Burleigh M C, Shin Y S, et al. Imprinting Coating: A Novel Synthesis ofSelective Functionalized Order Mesoporous Sorbents [J]. Angewandte ChemieInternational Edition,1999,38(9):1235-1239
    [256] Nieboer E, Richardson D H S. The replacement of the nodescript term-heavy met als.by a biologi cally and chemically significant classif ciation of metal ions [J].Environmental Pollut ion Series B,1980,1:3-26.
    [257]Avery S V, Tobin J M. Mechanism of adsorpt ion of hard and soft metal ions toSaccharomyces cerevisiae and influence of hard and soft anions [J]. Applied andEnvironment al Microbiology,1993,59(9):2851-2856.
    [258]Tsezos M, Remoudaki E, Angelatou V. A study of the eff ects of competing ions onthe biosorption of metal [J]. Internat ional Biodeteriorat ion and Biodegradat ion,1996,38(1):19-29.
    [259]Wang Yan,Chen Xuanli,Wen Lixiong,et al.Preparation and antibacterialperformance of silver nanoparticles encaged in mesoporous silica[J].Journal of BeijingUniversity of Chemical Technology: Natural Science Edition,2010,3(4):57-61.
    [260]Cai Xiaohui, Zhu Guangshan, Gao Bo, et al. Preparation of Ag/SBA-15nanocomposite and its bactericidal activity[J].Chemical Journal of Chinese Universities,2006,27(11):2042-2044.
    [261]M. Nadeem, R. Nadeem, H.U. Nadeem, S.S. Shah, Pak. Removal of Heavy MetalIons from Aqueous Solutions via Adsorption onto Modified Lignin from Pulping Wastes[J].Energy Sources,2005,27(12):1167-1177.
    [262]J. R m, M. Sillanp, V. Vickackaite, M. Orama, L. Niinist, J. Chelating ability andsolubility of DTPA, EDTA and β-ADA in alkaline hydrogen peroxide environment[J].Journal of Pulp and Paper Science,2000,26(4):125-131.
    [263]B. Sen Gupta, M. Curran, Shameem Hasan, T.K. Ghosh, J. Adsorption characteristicsof Cu and Ni on Irish peat moss[J]. Journal of Environmental Management,90(2009):954-960.
    [264]E. Repo, T.A. Kurniawan, J.K. Warchol, M.E.T. Sillanp. Removal of Co(II) andNi(II) ions from contaminated water using silica gel functionalized with EDTA and/orDTPA as chelating agents[J]. Journal of Hazardous Materials,2009,171:1071-1080.
    [265]E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Sillanp. Adsorption of Co(II) andNi(II) by EDTA-and/or DTPA-modifed chitosan:Kinetic and equilibrium modeling[J].Chemical Engineering Journal2010161:73-82.
    [266]O. Karniz Júnior, L.V.A. Gurgel, R.P. Freitas, L.F. Gil. Adsorption of heavy metal ionfrom aqueous single metal solution by chemically modified sugarcane bagasse[J].Bioresource Technology,2007,98(6):1291-1297.
    [267]F.V. Pereira, L.V.A. Gurgel, L.F. Gil. Removal of Zn2+from aqueous single metalsolutions and electroplating wastewater with wood sawdust and sugarcane bagassemodified with EDTA dianhydride (EDTAD). Journal of Hazardous Materials,2010,176(1-3):856-863.
    [268]J.X. Yu, M. Tong, X.M. Sun, B.H. Li. Enhanced and selective adsorption of Pb2+andCu2+by EDTAD-modified biomass of baker’s yeast. Bioresource Technology,2008,99(7):2588-2593.
    [269]C.S. Li, Y.H. Tsai, W.C. Lee, W.J. Kuo. Synthesis and Photophysical Properties ofPyrrole/Polycyclic Aromatic Units Hybrid Fluorophores[J]. The Journal of OrganicChemistry,2010,75(12):4004-4013.
    [270]R. Chicharro, M. Alonso, V.J. Aran, B. Herradon. Studies on calpain inhibitors.Synthesis of partially reduced isoquinoline-1-thione derivatives and conversion tofunctionalized1-chloroisoquinolines[J]. Tetrahedron Letters,2008,49(14):2275-2279.
    [271]S. Nagib, K. Inoue, T. Yamaguchi, T. Tamaru. Recovery of Ni from a large excess ofAl generated from spent hydrodesulfurization catalyst using picolylamine type chelatingresin and complexane types of chemically modified chitosan[J]. Hydrometallurgy,1999,51(1):73-85.
    [272]Mukthavaram Rajesh, Joyeeta Sen, Marepally Srujan, Koushik Mukherjee, BojjaSreedhar, Arabinda Chaudhuri. Dramatic influence of the orientation of linker betweenhydrophilic and hydrophobic lipid moiety in liposomal gene delivery[J]. Journal of theAmerican Chemical Society,2007,129(37):11408-11420.
    [273]H.P. Boehm. Some aspects of the surface chemistry of carbon blacks and othercarbons[J]. Carbon,1994,32(5)759-769.
    [274]I. Ghodbane, L. Nouri, O. Hamdaoui, M. Chiha. Kinetic and equilibrium study for thesorption of cadmium(II) ions from aqueous phase by eucalyptus bark[J]. Journal ofHazardous Materials,2008,152(1)148-158.
    [275]J.A. Dean. Lange’s Hand Book of Chemistry (15th ed.)[M], McGraw-Hill BookCompany, USA,1999.
    [276]D. Brunel, A. Cauvel, F. Fajula, F. DiRenzo. MCM-41type silicas as supports forimmobilized catalysts[J]. Studies in Surface Science and Catalysis,1995,97:173-180.
    [277]S. Lagergren. About the theory of so called adsorption of soluble substances[J]. KsverVeterskapsakad Handle,1898,24:1-6.
    [278]Da'na, E., Sayari, A. Adsorption of copper on amine-functionalized SBA-15preparedby co-condensation: Equilibrium properties[J]. Chemical Engineering Journal,2011,166(1):445-453.
    [279]M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen. Adsorption behaviourof methylene blue onto Jordanian diatomite: A kinetic study[J]. Journal of HazardousMaterials,2009,165(1-3):589-598.
    [280]G. Tan, H. Yuan, Y. Liu, D. Xiao. Removal of lead from aqueous solution with nativeand chemically modified corncobs[J]. Journal of Hazardous Materials,2010,174(1-3):740-745.
    [281]J.C. Zheng, H.M. Feng, M.H.W. Lam, P.K.S. Lam, Y.W. Ding, H.Q. Yu. Removal ofCu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbentmaterial[J]. Journal of Hazardous Materials,2009,171(1-3):780-785.
    [282]F. Yang, H. Liu, J. Qu, P.J. Chen. Preparation and characterization of chitosanencapsulated Sargassum sp. biosorbent for nickel ions sorption[J]. Bioresource Technology,2011,102(3):2821-2828.
    [283]J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, C. De, Y.C. Dai, W.K. Yuan. Characterization ofsurface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon,2007,45(4):785-796.
    [284]S.F. Lim, Y.M. Zheng, S.W. Zou, J.P. Chen. Characterization of Copper Adsorptiononto an Alginate Encapsulated Magnetic Sorbent by a Combined FT-IR, XPS, andMathematical Modeling Study[J]. Environmental Science&Technololy,2008,42(7):2551-2556.
    [285]M. Toupin, D. Belanger. Spontaneous Functionalization of Carbon Black by Reactionwith4-Nitrophenyldiazonium Cations[J]. Langmuir,2008,24(5):1910-1917.
    [286]Deng, S.B., Ting, Y.P. Characterization of PEI-modified biomass and biosorption ofCu (II), Pb (II) and Ni (II)[J]. Water Research,2005,39(10):2167-2177.
    [287]L.R. Pederson. Two-dimensional chemical-state plot for lead using XPS[J]. Journal ofElectron Spectroscopy and Related Phenomena1982,28(2):203-209.
    [288]J.A. Taylor, G.M. Lancaster, J.W. Chemical reactions of N+2ion beams with group IVelements and their oxides[J]. Journal of Electron Spectroscopy and Related Phenomena.1978,13(3)435-444.
    [289]A. Renzoni, F. Zino and E. Franchi. Mercury Levels along the Food Chain and Riskfor Exposed Populations[J]. Environmental Research,1998,77(2):68-72.
    [290]R. Von Burg. Inorganic mercury[J]. Journal of Applied Toxicology,1995,15(6):483-493.
    [291]Mercury Update: Impact on Fish Advisories. EPA Fact Sheet EPA-823-F-01-011; EPA,Office of Water: Washington, DC,2001.
    [292]Dujols V, Ford F, and Czarnik A W. Long-wavelength fluorescent chemodosimeterselective for Cu(II) ion in water[J]. Journal of the American Chemical Society,1997,119(31):7386-7387.
    [293]Wu D, Huang W, Duan C, et al. Highly sensitive fluorescent probe for selectivedetection of Hg2+in DMF aqueous media[J]. Inorganic Chemistry,2007,46(5):1538-1540.
    [294]Elizabeth M. Nolan and Stephen J. A “turn-on” fluorescent sensor for the selectivedetection of mercuric ion in aqueous media[J]. Journal of the American Chemical Society,2003,125(47):14270-14271.
    [295]Zheng H,Qian Z-H,Xu L, et a1. Switching the recognition preference of rhodamine Bspirolactam by replacing one atom:design of rhodamine B thiohydrazide for recognitionof Hg(II)in aqueous solution[J]. Organic1etters,2006,8(5):859-861.
    [296]Yang Y-K,Yook K-J, and Tae J.A rhodamine-based fluorescent and colorimetricchemodosimeter for the rapid detection of Hg2`ions in aqueous media[J]. Journal of theAmerican Chemical Society,2005,127(48):16760-16761.
    [297]Wu J-S, Hwang I-C, Kim K S, et al. Rhodamine-based Hg2+-selectivechemodosimeter in aqueous solution:fluorescent OFF-ON[J]. Organic letters,2007,9(5):907-910.
    [298]S. J. Lee, J. E. Lee, J. Seo, I. Y. Jeong, S. S. Lee and J. H. Jung. Optical sensor basedon nanomaterial for the selective detection of toxic metal ions[J]. Advanced FunctionalMaterials,2007,17(17):3441-3446.
    [299]P. Zhou, Q. T. Meng, G. J. He, H. M. Wu, C. Y. Duan and X. Quan,Highly sensitivefluorescence probe based on functional SBA-15for selective detection of Hg2+in aqueousmedia[J]. Journal of Environmental Monitoring,2009,11(3):648-653.
    [300]J. H. Gao, H. W. Gu and B. Xu. Multifunctional magnetic nanoparticles: design,synthesis, and biomedical applications[J]. Accounts of chemical research,2009,42(8):1097-1107.
    [301]Yang, X.F.; Guo, X.Q.; Zhao, Y.B. Development of a novel rhodamine-typefluorescent probe to determine peroxynitrite[J]. Talanta,2002,57(5):883-890.
    [302]Meili Yin, Zhenhua Li, Zhen Liu, Xinjian Yang, Jinsong Ren. MagneticSelf-Assembled Zeolite Clusters for Sensitive Detection and Rapid Removal of Mercury(II)[J]. Applied Materials&interface,2012,4(1):431–437.
    [303]Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH. Aselective fluoroionophorebased on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb(II) fromhuman blood[J]. Angewandte Chemie International Edition,2009,48:1239-1243.
    [304]Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and itsderivatives: a review[J]. Carbohydrate Polymers,2004,55(1):77-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700