用户名: 密码: 验证码:
日粮磷水平对矮小型蛋鸡产蛋性能、蛋壳品质及钙磷吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过以下试验,系统地研究了日粮不同磷水平对蛋鸡生产性能、钙磷吸收和免疫应激的影响,并确定了矮小型粉壳蛋鸡日粮中磷适宜供给量。
     试验一以玉米-豆粕型为基础日粮,配制设计含5个非植酸磷水平日粮,日粮其他营养水平一致。选用体重相近的28周龄矮小粉壳蛋鸡405只,随机分为9组,每组9个重复。研究日粮非植酸磷水平对30-41周龄产蛋高峰期矮小粉壳蛋鸡,50-61周龄产蛋中后期矮小粉壳蛋鸡生产性能、蛋品质及钙磷吸收相关基因表达的影响。试验结果如下:30-41周龄矮小粉壳蛋鸡代谢能2.70Mcal/kg和粗蛋白17%日粮中,非植酸磷水平推荐剂量为0.30%;50-61周龄蛋鸡代谢能2.60Mcal/kg和粗蛋白15.8%日粮中,非植酸磷水平推荐剂量为0.20%。随着日粮非植酸磷水平增加,60周龄蛋鸡ConA刺激指数呈先升高后降低的二次曲线关系,非植酸磷为0.28%组蛋鸡ConA刺激指数最高。蛋鸡十二指肠Napi-IIb mRNA表达量41周龄显著低于30周龄,十二指肠CaBP mRNA表达量41周龄显著高于30周龄。日粮中非植酸磷水平的提高,41周龄蛋鸡十二指肠肠道Napi-IIb mRNA表达量线性降低,肾脏Napi-IIa mRNA表达量线性升高。日粮中非植酸磷水平的提高,41周龄蛋鸡十二指肠CaBP mRNA的表达量和蛋白表达量呈先升高后降低二次曲线关系,日粮非植酸磷水平为0.25%和0.30%达到最大值。结果表明,随着蛋鸡周龄的增长,蛋鸡对非植酸磷的需求量降低,十二指肠Napi-IIb mRNA下降;蛋鸡对钙的需求量升高,十二指肠CaBP mRNA表达量升高。
     试验二采用2x3因子安排的随机试验设计,两个多维水平和0.20%、0.30%和0.40%三个非植酸磷水平,以玉米-豆粕型为基础日粮,日粮其他营养水平一致。随机分为6个处理,每个处理5个重复,每个重复15只鸡,共450只蛋鸡。研究日粮非植酸磷和多维水平对矮小粉壳蛋鸡蛋壳品质和暗斑蛋壳的影响。试验结果如下:饲喂低多维水平和0.30%非植酸磷日粮,蛋鸡产蛋率最高。日粮非植酸磷和多维水平的增加也显著加深了蛋壳色泽。日粮非植酸磷水平的提高显著升高了蛋鸡血清磷含量,降低了血清钙的含量。提高多维水平增加了蛋鸡血清中白蛋白含量,降低了血清中ALP含量。日粮非植酸磷和多维水平对蛋鸡血清磷和T-SOD含量的影响有显著互作效应。暗斑蛋壳组外层钙元素相对含量、内膜磷元素相对含量和蛋壳中钙含量显著低于无斑蛋组。暗斑蛋壳组壳膜厚度、内膜及三层总厚度极显著低于无斑蛋壳组。产暗斑蛋的蛋鸡血清中丙二醛(MDA)显著升高。产暗斑蛋的蛋鸡子宫CaBP mRNA和Ca2+-ATPase mRNA表达量显著低于正常蛋鸡。结果表明暗斑蛋壳的产生与钙磷代谢密切相关,蛋壳乳突层有效厚度对蛋壳质量有重要影响。0.4%非植酸磷日粮降低了蛋鸡暗斑蛋的发生率。
     试验三以玉米-豆粕型为基础日粮,配制设计0.12%和0.40%两种非植酸磷水平日粮,日粮其他营养水平一致。试验采用28周龄体况良好体重相近的蛋鸡300只,随机分为2个组,每组设10个重复,每个重复15只鸡。预饲期为4周,试验期为5周。预饲期结束后32周龄时,每组半数(5个重复)的蛋鸡隔天(第1、3、5、7、9)腹腔注射脂多糖(注射剂量为1.5mg/kg),剩余半数(5个重复)注射相同剂量的生理盐水。研究不同磷营养状态下免疫应激对蛋鸡产蛋性能和蛋品质等影响。与生理盐水组相比,脂多糖注射3小时后脂多糖组蛋鸡直肠温度显著增高,脂多糖组采食量和产蛋率显著下降,料蛋比显著增加。脂多糖诱导的免疫应激显著增加了鸡蛋的蛋壳厚度,增强了蛋壳强度,同时增加了蛋白高度和哈氏单位。非植酸磷水平和脂多糖对蛋壳和蛋黄色泽有极显著的互作效应。显著提高蛋壳和胫骨中钙和磷的含量。脂多糖诱导的免疫应激降低了血清钙、磷和超氧化物歧化酶含量,提高了血清中丙二醛(MDA)、白介素-1β (IL-1β)和白介素-6(IL-6)含量,脂多糖处理组蛋鸡肝脏和脾脏占蛋鸡体重比率显著高于生理盐水处理组。脂多糖诱导的免疫应激显著提高了盲肠扁桃体IL-1p和IL-6mRNA表达水平,导致蛋鸡生产性能下降,小肠绒毛结构损伤。随着日粮磷水平升高,蛋鸡血清中MDA含量降低,Y干扰素(IFN-γ)含量增加,增加了绒毛高度与隐窝深度的比值,减轻肠道损伤,增强机体的免疫机能。
     本研究表明30-41周龄矮小粉壳蛋鸡日粮中代谢能2.70Mcal/kg和粗蛋白17%,非植酸磷水平推荐剂量为0.30%,50-61周龄日粮中代谢能2.60Mcal/kg和粗蛋白15.8%,非植酸磷水平推荐剂量为0.20%。随着蛋鸡周龄的增长,蛋鸡对非植酸磷的需求量降低,对钙的需求量增加。暗斑蛋壳组外层钙元素相对含量、内膜磷元素相对含量和蛋壳中钙含量显著低于无斑蛋组。产暗斑蛋的蛋鸡子宫CaBP mRNA和Ca2+-ATPase mRNA表达量低于正常蛋鸡;暗斑蛋壳的产生与钙磷代谢密切相关。脂多糖诱导的免疫应激导致蛋鸡生产性能下降,小肠绒毛结构损伤,日粮磷水平增加可以减轻肠道损伤,增加血清中γ干扰素含量,增强了机体的免疫机能。
In order to systemically investigate the effect of different levels of dietary phosphorus on the production performance, metabolism of calcium and phosphorus and immunity stress in layers, and determine phosphorus supply in the dwarf layers of dietary
     Experiment1:The corn-soybean meal with5levels of non-phytate phosphorus (NPP) were used. A total of405pink-shell dwarf layers aged at28weeks were randomly divided into9treatments with9replicates each. Production performance at and after peak production, egg quality and expression of genes related to calcium and phosphorus were investigated. Dietary NPP of0.3%could meet the requirement for the peak egg production (30-40weeks of age), while NPP of0.2%was sufficient for the production performance of layers aged at50-61weeks. With the increment in dietary NPP, the ConA stimulation index displayed a quadratic relationship with the highest level at0.28%of dietary NPP. At41weeks of age, with the increase in dietary NPP, the Nap Ⅱb mRNA abundance in duodenum decreased linearly, while kidney Nap Ⅱa mRNA increased linearly. The levels of CaBP mRNA and protein expression showed a quadratic relationship with dietary NPP with highest expression at the0.25%and0.30%of NPP, respectively. Those results suggested that the requirement of NPP decreased, but calcium requirement increased in aged birds. In accordance, the expression of Nap Ⅱb mRNA and CaBP mRNA decreased and increased in the duodenum.
     Experiment2:The2*3factorial experimental design was adopted with2levels of multi-vitamin supplements and3levels of dietary NPP (0.2%,0.3%and0.4%) in the corn-soybean meal. A total of450layers has been randomly divided to5treatments with5repeats each treatment of15birds each. Egg production and egg quality were investigated. Highest egg production was observed when0.3%of NPP were supplemented in the diet containing low level of multi-vitamin. The eggshell color was darken with the increment in dietary NPP and multi-vitamin. Dietary NPP significantly increased serum phosphorus but decreased serum calcium content. Multi-vitamin supplements increased the serum albumin and decreased serum ALP. There were interactions on serum phosphorus and T-SOD activity between dietary NPP and multi-vitamin. Compared with unspotted eggs, the thickness of eggshell and the membrane was thinner in spotted eggs. The contents of phosphorus and calcium were lowered in the inner membrane and the outer membrane of spotted eggshell, respectively. In layers producing spotted eggs, uterus CaBP mRNA and Ca2+-ATPase mRNA expression was lower than normal hens; in contrast, serum MDA was higher. The results suggested calcium and phosphorus metabolism closely related with the formation of spotted eggs. The eggshell and membrane thickness positively correlated with the spots formation and the effective thickness of papillary layer has a determinative role in eggshell quality. Dietary NPP of0.4%decreased the ratio of spotted eggs.
     Experiment3:The layer were fed either0.12%or0.4%dietary NPP in corn-soybean meal. A total of300healthy layers aged28weeks old has been randomly divided to2dietary treatment groups with10repeats each treatment of15birds each. All bird were prefed for4weeks and the trial lasted for5weeks. At the age of32weeks, half birds of each dietary treatment received LPS or saline administration ip on every the other day for9days. Egg production and egg quality were determined when immunologically stressed those layers. Administration of LPS elevated the rectal temperature after3hours and significantly decreased feed intake and egg production. LPS-induced immune stress significantly increased eggshell thickness, strength, albumin height and Haugh unit. There was a significant interaction between dietary NPP and LPS treatment. LPS-induced immune stress lowered serum calcium, phosphorus, total protein, albumin, globulin and SOD activities, but increased MDA, IL-1β and IL-6in the serum. Layers received LPS had higher relative weight of liver and spleen than those received saline. LPS stimulation significantly increased cecum IL-1β, IL-6and IL-10mRNA expression. LPS administration also damaged the architecture of intestine villi, decreased the ratio of villi height/crypt depth and dampened the crypt. Dietary phosphorus significantly increased the ratio of villi height/crypt depth, decreased serum MDA and IFN-y and alleviated the damage in the intestine.
     In conclusion, the recommended dietary NPP for pink-shell dwarf layers were0.3%and0.2%at the peak production and after the peak production, respectively. The requirement for NPP and calcium decreased and increased in aged layers, respectively. The CaBP mRNA abundance in the uterus was lower in birds producing spotted eggs than normal birds, indicating the close relationship between the formation of spotted eggshell and metabolism of calcium and phosphorus. The eggshell and membrane thickness positively correlated with the spots formation. LPS-induced immune stress significantly decreased egg production and damaged the architecture of intestine villi and high level of dietary NPP could alleviate the damage by elevating serum IFN-y.
引文
鲍恩东,陈万芳.鸡胚免疫系统器官组织学变化观察.中国兽医科技,1996,26(2):26-27.
    曾鸣,王笑云.Ⅱa型Na-Pi协同转运体.国外医学(泌尿系统分册),2004,1
    陈静,刘显军,边连全,等.谷氨酰胺对早期断奶仔猪生长性能和免疫性能的影响.西北农业学报,2006,15(4):58-62.
    戴有理,张学余,卜柱,等.绿壳蛋鸡杂交组合亲本及F1代蛋壳超微结构的观察.中国畜牧兽医,2006,33(10):36-.40.
    丁保安.饲粮非植酸磷水平对褐壳蛋鸡植酸磷利用率的影响.中国家禽,2002,24(7):9-10.
    董晓玲,刘国华,蔡辉益,郑爱娟,张姝,陈桂兰,常文环.细菌脂多糖诱导的急性免疫应激对肉仔鸡肉品质的影响.动物营养学报,2007,19(5):622-626.
    方热军,贺佳,曹满湖,等.日粮磷水平对肉鸡磷代谢及Na/Pi-Ⅱb基因mRNA表达的影响.畜牧兽医学报,2011,42(2):289-296.
    冯军,王丙云,王政富.p-葡聚糖对马岗鹅T淋巴细胞数量及免疫器官的影响.中国兽医科技,2002,32(11):29-31.
    高峰,王小红,黄心庆,等.植酸酶对产蛋鸡生产性能和代谢的影响.中国饲料,2003,10:15-16.
    国家统计局.中国统计年鉴2012.北京:中国统计出版社,2012.
    韩进诚.1α-OH D_3和植酸酶对肉鸡磷代谢的影响及肠道NaPi-Ⅱb基因表达调控.2008.
    韩正康.家畜营养生理学.北京:北京农业出版社,1991:16-19.
    胡泉舟,侯永清,丁斌鹰,等.α-酮戊二酸对仔猪小肠黏膜组织学形态与功能的影响.动物营养学报,2008,20(6):662-667.
    胡忠宏.短链脂肪酸对肉仔鸡小肠功能的影响及有关作用机制.博士学位论文.北京:中国农业大学,2006.
    滑静,王晓霞,杨佐君,等.维生素C,E对热应激期蛋鸡血液生化指标的影响.动物营养学报,2001,13(4):59-62.
    霍启光等.动物磷营养与磷源.北京:中国农业科学技术出版社.2002.
    蒋谷人.临床生化检验诊断手册.郑州.河南科技出版社.1991.
    雷乔波,石凌霄,张克英,等.不同剂型植酸酶对蛋鸡产蛋性能,蛋品质和骨骼质量的影响.动物营养学报,2010(005):1374-1381.
    雷乔波.植酸酶对产蛋鸡生产性能,骨骼质量及养分利用率的影响.硕士学位论文,四川农业大学,2010:25-35.
    李树文.维生素C多聚磷酸酯对热应激蛋鸡生产性能,抗体水平及抗氧化性的影响.扬州大学,2006.
    李彦,杨在宾,杨维仁,等.日粮中添加不同水平维生素C对肉鸡抗氧化和免疫性能影响的研究.山东农业大学学报:自然科学版,2009,40(2):229-234.
    李治学.鸡钙代谢调节物质基因真核表达质粒应用效果的研究.扬州:扬州大学.2007.
    刘继承,高慧君,王利.蛋壳暗斑的成因.中国家禽,2007,29(10):49-51.
    刘丽艳,张海棠,张慧辉.维生素C在蛋鸡生产上的应用研究.黑龙江畜牧兽医,2004(11):30-31.
    刘玉兰,黄晶晶,侯永清,等.L-精氨酸对脂多糖刺激断奶仔猪肠道结构和功能的影响.中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集.2008.
    路俞,王雅倩,章世元,等.鸡CaBP-D28k基因克隆序列测定及其真核表达质粒的构建.畜牧兽医学报,2008,39(10):1329-1335.
    罗士津,韩进城,张铁鹰,等.猪无机磷吸收机制研究进展.饲料博览,2008,3:19-21.
    马霞,朱连勤,朱风华,等.低磷日粮对海兰褐蛋鸡生产性能和蛋品质的影响.畜牧与兽医,2007,39(10):41-43.
    毛萌和王道聪.维生素D及CaBP-Ds在肠道和肾脏钙转运中的作用.国外医学-儿科学分册,1996,23(6):289-291.
    孟昭亨.骨钙素及其临床意义.中华内分泌代谢杂志,1992,8(1):41-43.
    宁中华,李吉祥,石榜驰.用产蛋高峰后前期(29-44周龄)成绩估计全期产蛋数的研究.中国畜牧杂志,1994,6.
    宁中华,王庆民,袁建敏,等.矮小型褐壳蛋鸡解剖学研究.中国家禽,1999,10:3-4.
    邱梅平,王恬.低磷日粮中添加植酸酶对蛋鸡肠道形态结构的影响.饲料工业,2009,30(24):20-23.
    邱荣斌,吴发兴.不同剂量维生素C对蛋鸡免疫机能的影响.动物医学进展,2009,30(11):72-75.
    Safaa H M,赵景鹏.日粮不同钙源与添加水平对褐壳蛋鸡产蛋后期生产性能及蛋品质的影响.中国畜牧兽医,2008,35(11):129-129.
    苏崭,田河.畜禽免疫应激模型的研究进展.饲料博览,2010(10):14-17.
    孙国荣,章世元,姜德兴,等.有效磷和粗制植酸酶对蛋鸡生产性能,蛋品质的影响.江西畜牧兽医杂志,2003,5:4-5.
    孙国荣.有效磷水平和粗制植酸酶对蛋鸡生产性能,物质代谢,骨骼质量,血液生化指标的影响.硕士学位论文,江苏:扬州大学,2002:20-29.
    孙杰,赵宗胜,姚秀娟,等.钙结合蛋白d28k基因在鸡子宫中表达变化的研究.安徽农业科学,2010.2:023.
    孙杰.大白猪和五指山猪小肠钠依赖型磷转运吸收的比较研究.山东理工大学硕士学位论文.2006.
    汪琳仙.动物内分泌学.北京:北京农业大学出版社,1993:127-130.
    王凤来,张曼夫,陈清明,等.日粮磷和钙磷比例对小型猪(香猪)血清、肠、骨碱性磷酸酶及血清钙磷的影响.动物营养学报,2001,13(1):36-42.
    王丽娟,单安山,等.植酸酶和纤维素酶对蛋鸡生产性能和竹养物质利用的形响,2002,14(1):45-50
    王佩伦,李炳熠,郭海明,等.不同周龄母鸡鸡蛋及不同蛋壳质地鸡蛋的蛋品质比较.家禽科学,2011,11:8-11.
    文杰.VE和VC生理功能的相互关系.国外畜牧科技,1995,22(1):6-9.
    谢尔凡.碱性磷酸酶乙酯研究进展.国外医学-临床系列化学检验分册,1994,4:171.
    谢幼梅,林海,康丽,等.有效磷水平对产蛋高峰期蛋鸡生产性能的影响.中国畜牧杂志,2002,1:010.
    谢幼梅,林海,陈官营,等.有效磷水平对蛋鸡后期产蛋性能和蛋壳质量的影响.山东农业科学,1999,3.
    许振英.猪对常量无机元素的需要量.养猪,1990,90(3):4146.
    杨彩梅,徐卫丹,陈安国.甘氨酰-L-谷氨酰胺对断奶仔猪生长性能及肠道吸收功能的影响.中国畜牧杂志,2005,41(8):6-8.
    杨凤.动物营养学.北京.中国农业出版社,2001:79-85.
    杨凤.动物营养学.中国农业出版社.1999.
    杨汉春.鸡免疫抑制性疾病研究近况.畜牧兽医科技信息,1994,11:000.
    杨宁.家禽生产学.北京.中国农业出版社.2002.
    杨权.下丘脑-垂体-肾上腺皮质轴应激反应的中枢控制.生理科学展,2000,31(3):222-226.
    姚秀娟.蛋壳形成过程中超微结构及钙沉积相关基因表达的研究.硕士学位论文.新疆:石河子大学,2010.
    于明香,王洪复.降钙素对破骨细胞骨吸收抑制作用的机理.中华内分泌代谢杂志,1997,13(2):119-122.
    俞路,王雅倩,章世元.鸡钙营养代谢及基因调控研究进展.饲料研究,2007,7:25-32.
    虞泽鹏,乐国伟,施用晖,侯丽.不同锌源对断奶小鼠生长及机体抗氧化能力的影响.畜牧与兽医,2005,37(4).1-3.
    张洪英,鲍恩东.热应激对雏鸡自然杀伤(NK)细胞活性和T淋巴细胞转化率的影响.南京农业大学学报,2000,23(4):85-88.
    张旭辉.RRR-a-生育酚唬拍酸酯对肉鸡免疫应激调控作用研究.南京:南京农业大学,2010.
    张子仪.中国饲料学.中国农业出版社,2000,1-111.
    章世元,俞路,王雅倩,等.蛋壳质量与元素组成,超微结构关系的研究.动物营养学报,2008,20(4):423-428.
    章世元,俞路,王雅倩,等.日粮钙磷水平对笼养蛋鸡骨代谢及骨超微结构的影响.核农学报,2008,22(5):732-738.
    朱建民,方浩等.降钙素对体外培养成骨细胞的影响.中国骨质疏松杂志,2001,7(2):147-148
    朱惠玲,韩杰,谢小利,等.L-精氨酸对脂多糖刺激断奶仔猪肠黏膜免疫屏障的影响.中国畜牧杂志,2012,48(]):27-32.
    朱连勤,朱风华,张宗敏,等.低磷日粮对产蛋鸡生产性能及脏器组织磷含量的影响.中国家禽,2000,(9).7-10.
    朱晓英,侯加法.缺磷日粮对笼养蛋鸡生产性能及内分泌的影响.中国兽医科技,2004,34(1):62-66.
    朱旋,蒲刚,冯庆玲.鸵鸟蛋壳的微结构研究.材料导报,2000,14:302-304.
    朱元招,葛金山,孙小恒,等.低磷日粮对蛋鸡产蛋性能和血清钙磷的影响.饲料研究,2010(6):53-56.
    Allen L H, Hall T E. Calcium metabolism, intestinal calcium-binding protein, and bone growth of rats fed high protein diets. The Journal of nutrition,1978,108(6):967-972.
    Amaguchi T, Chattopadhyay N, Kifor O, et al. Mouse osteoblastic cell lin (MC3T3-EI) expresses extracellular Calcium-sensing receptor and its agonists stimulatchemotaxis and proliferation of MC3T-3E1 cells. Journal of Bone and Mineral Research,1998,13(10):1530-1538.
    Armbrecht H J. Effect of age on calcium and phosphate absorption:role of 1,25-dihydroxyvitamin D. Mineral and electrolyte metabolism,1990,16(2-3):159-166.
    Bain M M. Recent advances in the assessment of eggshell quality and their future application. World's Poultry Science Journal,2005,61(2):268-277.
    Bar A, Hurwitz S.< i> In vitro calcium transport in laying fowl intestine:Effect of bile preparations. Comparative Biochemistry and Physiology Part A:Physiology,1972,41(2):383-389
    Bar A, Hurwitz S. Egg shell quality, medullary bone ash, intestinal calcium and phosphorus absorption, and calcium-binding protein in phosphorus-deficient hens. Poultry science,1984,63(10): 1975-1979.
    Bar A. Calcium transport in strongly calcifying laying birds:Mechanisms and regulation. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2009,152(4):447-469.
    Beishuizen A, Thijs L G. Review:endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of endotoxin research,2003,9(1):3-24.
    Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annual review of medicine,2010,61:91-104.
    Berner W, Kinne R, Murer H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem. J,1976,160:467-474.
    Berner Y N, Shike M. Consequences of phosphate imbalance. Annual review of nutrition,1988,8(1): 121-148.
    Beisel W R. Single nutrients and immunity. American Journal of Clinical Nutrition,1982,35.
    Birge S J, Avioli R C. Intestinal phosphate transport and alkaline phosphatase activity in the chick. American Journal of Physiology-Endocrinology And Metabolism,1981,240(4):E384-E390.
    Boling S D, Douglas M W, Johnson M L, et al. The effects of dietary available phosphorus levels and phytase on performance of young and older laying hens. Poultry Science,2000,79(2):224-230.
    Boling S D, Douglas M W, Shirley R B, et al. The effects of various dietary levels of phytase and available phosphorus on performance of laying hens. Poultry Science,2000,79(4):535-538.
    Boling S D, Douglas M W, Snow J L, et al. Citric acid does not improve phosphorus utilization in laying hens fed a corn-soybean meal diet. Poultry Science,2000,79(9):1335-1337.
    Boorman K N, Gunaratne S P. Dietary phosphorus supply, egg-shell deposition and plasma inorganic phosphorus in laying hens. British poultry science,2001,42(1):81-91.
    Borowitz S M, Ghishan F K. Maturation of jejunal phosphate transport by rat brush border membrane vesicles. Pediatr Res,1985,19:1308-1312.
    Borowitz S M, Ghishan F K. Phosphate transport in human jejunal brush-border membranevesicles. Gastroenterology,1989,96:4-10.
    Borowitz S M, Granrud G S. Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits. The Journal of nutrition,1992,122(6):1273-1279.
    Bouhtiauy I, Lajeunesse D, Christakos S, et al. Two vitamin D3-dependent calcium binding proteins increase calcium reabsorption by different mechanisms. I. Effect of CaBP 28K. Kidney international,1994,45(2):461-468.
    Boyd R D, Hall D, Wu J F. Plasma alkaline phosphatase as a criterion for determining biological availability of phosphorus for swine. Journal of Animal Science,1983,57(2):396-401.
    Brandis M, Harmeyer J, Kaune R, et al. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine. The Journal of physiology,1987,384(1):479-490.
    Buyse J, Swennen Q, Niewold T A, et al. Dietary L-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens. Veterinary immunology and immunopathology,2007,118(1):154-159.
    Calvo M S, Bell R R, Forbes R M. Effect of protein-induced calciuria on calcium metabolism and bone status in adult rats. The Journal of nutrition,1982,112(7):1401-1413.
    Capuano P, Radanovic T, Wagner C A, et al. Intestinal and renal adaptation to a low-Pi diet of type Ⅱ NaPi cotransporters in vitamin D receptor-and 1 a-OHase-deficient mice. American Journal of Physiology-Cell Physiology,2005,288(2):C429-C434.
    Caverzasio J, Danisi G, Straub R W, et al. Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles:influence of sodium and pH. Pflugers Archiv, 1987,409(3):333-336.
    Celebi S, Bolukbasi S C, Utlu N. The Influence of Dietary Phosphorus Level on Plasma Calcium and Phosphorus, Eggshell Calcium and Phosphorus. International Journal of Poultry Science,2005, 4(7):497-499.
    Chien Y C, Hincke M T, Vali H, et al. Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth< i> in vitro. Journal of structural biology,2008, 163(1):84-99.
    Chisolm Jr J J, Harrison H E. Aminoaciduria in vitamin D deficiency states in premature infants and older infants with rickets. The Journal of pediatrics,1962,60(2):206-219.
    Christakos S, Gabrielides C, Rhoten W B. Vitamin D-dependent calcium binding proteins:chemistry, distribution, functional considerations, and molecular biology. Endocrine reviews,1989,10(1): 3-26.
    Christakos S, Gill R, Lee S, et al. Molecular aspects of the calbindins. The Journal of nutrition, 1992,122 (3 Suppl):678.
    Clemens T L, McGlade S A, Garrett K P, et al. Tissue-specific regulation of avian vitamin D-dependent calcium-binding protein 28-kDa mRNA by 1,25-dihydroxyvitamin D3. Journal of Biological Chemistry,1988,263(26):13112-13116.
    Cohen J, Cohen P. Applied multiple regression/correlation analysis for the behavioral sciences. Lawrence Erlbaum,1975.
    Cole R K. An autosomal dwarfism in the domestic fowl. Poultry Science,2000,79(11):1507-1516.
    Coquerelle G, Merat P. Effects associated with the sex-linked imperfect albinism (s (al)) in dwarf laying hens (dw). Archiv fuer Gefluegelkunde,1996,60.
    Craviso G L, Garrettk P, Clemens T L.1,25-Dihydroxyvitamin D3 induces the synthesis of vitamin D-dependent calcium-binding protein in cultured chick kidney cells. Endocrinology,1987,120(3): 894-902.
    Cross H S, Debiec H, Peterlik M. Mechanism and regulation of intestinal phosphate absorption. Mineral and electrolyte metabolism,1990,16(2-3):115.
    Cross H S, Peterlik M. Differential response of enterocytes to vitamin D during embryonic development: induction of intestinal inorganic phosphate, d-glucose and calcium uptake. Hormone and Metabolic Research,1982,14(12):649-652.
    Danisi G, Bonjour J P, Straub R W. Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1,25-dihydroxycholecalciferol. Pflugers Archiv,1980,388(3):227-232,
    Danisi G, Murer H, Straub R W. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. American Journal of Physiology-Gastrointestinal and Liver Physiology,1984, 246(2):G180-G186.
    Danisi G, Murer H. Inorganic phosphate absorption in small intestine. Comprehensive Physiology, 1991.
    De Benedetti F, Alonzi T, Moretta A, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-Ⅰ. A model for stunted growth in children with chronic inflammation. Journal of Clinical Investigation,1997,99(4):643.
    Demer L M.New biochemical maker for bone diseaes. Clin Chem,1992,38(11):2169.
    Doxey D L.Minerals in animal and human nutrition. Tropical Animal Health and Production,1992, 24(4):241-241.
    Dritz S S, Owen K Q, Goodband R D, et al. Influence of lipopolysaccharide-induced immune challenge and diet complexity on growth performance and acute-phase protein production in segregated early-weaned pigs. Journal of animal science,1996,74(7):1620-1628.
    Edwards H M, Suso F A. Phosphorus requirement of six strains of caged laying hens. Poultry Science, 1981,60(10):2346-2348.
    Eto N, Miyata Y, Ohno H, et al. Nicotinarnide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrology Dialysis Transplantation,2005,20(7):1378-1384.
    Eto N, Tomita M, Hayashi M. NaPi-mediated transcellular permeation is the dominant route in intestinal inorganic phosphate absorption in rats. Drug metabolism and pharmacokinetics,2006, 21(3):217-221.
    Fargeas M J, Fioramonti J, Bueno L. Central Action of Interleukin-1 on Intestinal Motility in Rats: Mediation by Two Mechanisms. Gastroenterology,1993,104:377-377.
    Farley J R, Wergedal J E, Hall S L, et al. Calcitonin has direct effects on3 [H]-thymidine incorporation and alkaline phosphatase activity in human osteoblast-line cells. Calcified tissue international, 1991,48(5):297-301.
    Feher J J, Fullmer C S, Fritzsch G K. Comparison of the enhanced steady-state diffusion of calcium by calbindin-D9K and calmodulin:possible importance in intestinal calcium absorption. Cell Calcium, 1989,10(4):189-203.
    Fenster R H,Weiser.Vitam in application and recent advance. Zootecnicaa International.1994,8:42-49.
    Ferket P R, Zehava U. New methods to increase gastrointestinal development at hatch and improve neonatal digestive function in poultry//49th Maryland Nutrition Conference for Feed Manufacturers.2002:43-57.
    Fong Y, Moldawer L L, Marano M, et al. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1989,256(3):R659-R665.
    Fontaine N, Fourdin A, Pointillart A. Absence of effect of vitamin D on intestinal phytase and alkaline phosphatase:relation with phytic phosphorus in the pig. Reproduction, nutrition, development, 1985,25(4A):717.
    Fox J, Care A D. Effect of low calcium and low phosphorus diets on the intestinal absorption of phosphate in intact and parathyroidectomized pigs. Journal of Endocrinology,1978,77(2):225-231.
    Fox J, Care A D. Stimulation of duodenal and ileal absorption of phosphate in the chick by low-calcium and low-phosphorus diets. Calcified tissue research,1978,26(1):243-245.
    Freeman B A, Crapo J D. Biology of disease:free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology,1982,47(5):412-426.
    Frost T J, Roland D A. The Influence of Various Calcium and Phosphoras Levels on Tibia Strength and Eggshell Quality of Pullets During Peak Production. Poultry Science,1991,70(4):963-969.
    Fuchs R, Peterlik M. Vitamin D-induced transepithelial phosphate and calcium transport by chick jejunum:effect of microfilamentous and microtubular inhibitors. FEBS letters,1979,100(2): 357-359.
    Ganey P E, Barton Y W, Kinser S, et al. Involvement of cyclooxygenase-2 in the potentiation of allyl alcohol-induced liver injury by bacterial lipopolysaccharide.Toxicology and applied pharmacology, 2001,174(2):113-121.
    Giapros V, Vantziou S, Cholevas V, et al. Effect of intravenous phosphate on the red cell phosphate metabolites of the preterm infant. Nutrition Research,2001,21(1):71-79.
    Gillis S, Crabtree G R, Smith K A. Glucocorticoid-induced inhibition of T cell growth factor production I. The effect on mitogen-induced lymphocyte proliferation. The Journal of Immunology,1979, 123(4):1624-1631.
    Giral H, Caldas Y, Sutherland E, et al. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. American Journal of Physiology-Renal Physiology,2009,297(5): F1466-F1475.
    Gordon R W, Roland D A. Influence of supplemental phytase on calcium and phosphorus utilization in laying hens. Poultry science,1998,77(2):290-294.
    Gordon R W, Roland D A. Performance of commercial laying hens fed various phosphorus levels, with and without supplemental phytase. Poultry Science,1997,76(8):1172-1177.
    Hamer H M, Jonkers D M A E, Bast A, et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clinical Nutrition,2009,28(1):88-93.
    Harrison H E, Harrison H C. Intestinal transport of phosphate:action of vitamin D, calcium, and potassium. American Journal of Physiology--Legacy Content,1961,201(6):1007-1012.
    Hartel H. Evaluation of the dietary interaction of calcium and phosphorus in the high producing laying hen. British poultry science,1990,31(3):473-494.
    Hattenhauer O, Traebert M, Murer H, et al. Regulation of small intestinal Na-Pi type Ⅱb cotransporter by dietary phosphate intake. American Journal of Physiology-Gastrointestinal and Liver Physiology,1999,277(4):G756-G762.
    Hegsted M, Schuette S A, Zemel M B, et al. Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J Nutr,1981,111(3):553-562.
    Helbock H J, Forte J G, Saltman P. The mechanism of calcium transport by rat intestine. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis,1966,126(1):81-93.
    Hendricks D G, Miller E R, Ullrey D E, et al. Effect of level of soybean protein and ergocalciferol on mineral utilization by the baby pig. Journal of Animal Science,1969,28(3):342-348.
    Hildmann B, Storelli C, Danisi G, et al. Regulation of Na+-Pi cotransport by 1,25-dihydroxyvitamin D3 in rabbit duodenal brush-border membrane. American Journal of Physiology-Gastrointestinal and Liver Physiology,1982,242(5):G533-G539.
    Hilfiker H, Hattenhauer O, Traebert M, et al. Characterization of a murine type Ⅱ sodium-phosphate cotransporter expressed in mammalian small intestine. Proceedings of the National Academy of Sciences,1998,95(24):14564-14569.
    Hodsman A B, Fracher I J, et al. Arandomized controlled trial to compare the efficacyof cyclical parathyroid hormone and sequential calcitonin to improve bonemass in postmenopausal women with osteoporosis. J Clin Endocrinol Metab,1997,82(2):620-628.
    Holcombe D J, Roland D A, Harms R H. The ability of hens to regulate protein intake when offered a choice of diets containing different levels of protein. Poultry Science,1976,55(5):1731-1737.
    Holcombe D J, Roland D A, Harms R H. The ability of hens to regulate phosphorus intake when offered diets containing different levels of phosphorus. Poultry Science,1976,55(1):308-317.
    Howe J C, Beecher G R. Effect of dietary protein and phosphorus levels on calcium and phosphorus metabolism of the young, fast growing rat. The Journal of nutrition,1981,111(4):708-720.
    Huber K, Hempel R, Rodehutscord M. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake. Poultry science,2006, 85(11):1980-1986.
    Huber K, Walter C, Schroder B, et al. Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2002,283(2):R296-R302.
    Hurwitz S, Bar A. The sites of calcium and phosphate absorption in the chick. Poultry science, 1970,49(1):324-325.
    Johnson R W, Von Borell E. Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. Journal of animal science,1994,72(2):309-314.
    Johnson R W. Inhibition of growth by pro-inflammatory cytokines:an integrated view. Journal of animal science,1997,75(5):1244-1255.
    Jongbloed A W, Lenis N P. Environmental concerns about animal manure. Journal of Animal Science, 1998,76(10):2641-2648.
    Jorgensen H A, Just J A. Fernandez. Apparent digestion by pigs of calcium and phosphate measured at the terminal ileum and overall. Paper 30EAAP. Harrogate.1979.
    Katai K, Miyamoto K, Kishida S, et al. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem Journal,1999, 343:705-712.
    Kayne L H, Argenio D Z, Meyer J H, et al. Analysis of segmental phosphate absorption in intact rats. A compartmental analysis approach. Journal of Clinical Investigation,1993,91(3):915.
    Keshavarz K. A comparison between cholecalciferol and 25-OH-cholecalciferol on performance and eggshell quality of hens fed different levels of calcium and phosphorus. Poultry science,2003, 82(9):1415-1422.
    Keshavarz K. Reevaluation of nonphytate phosphorus requirement of growing pullets with and without phytase. Poultry Science,2000,79:1143-1153.
    Keshavarz, K. Further investigation on the effect of dietary manipulation of protein phosphorus and calcium for reducing their daily requirement for laying hens. Poultry Science,1998,77:1333-1346.
    Klasing K C, Austic R E. Changes in protein degradation in chickens due to an inflammatory challenge.InProceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, NY). Royal Society of Medicine,1984,176(3): 292-296.
    Klasing K C, Barnes D M. Decreased amino acid requirements of growing chicks due to immunologic stress. The Journal of nutrition,1988,118(9):1158.
    Klasing K C, Laurin D E, Peng R K, et al. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. The Journal of nutrition,1987,117(9): 1629-1637.
    Klingensmith P M, Hester P Y. Phosphorus phase feeding and uterine and isthmus mucosal enzymes and mineral in relation to soft-shelled and shell-less egg production. Poultry Science,1985,64: 2180-2188.
    Kobayashi T, Sugimoto T, Saijoh K, et al. Calcitonin directly acts on mouse osteoblastic MC3T3-E1 cells to stimulate mRNA expression of c-fos, insulin-like growth factor-1 and osteoblastic phenotypes (type 1 collagen and osteocalcin). Biochemical and biophysical research communications,1994,199(2):876-880.
    Kowarski S, Schachter D. Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. Journal of Biological Chemistry,1969,244(1):211-217.
    Lipskaia L, Chemaly E R, Hadri L, et al. Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert opinion on biological therapy,2010,10(1):29-41.
    Leeson S, Caston L. Response of laying hens to diets varying in crude protein or available phosphorus.The Journal of Applied Poultry Research,1996,5(3):289-296.
    Lenczowski M J P, Van Dam A M, Poole S, et al. Role of circulating endotoxin and interleukin-6 in the ACTH and corticosterone response to intraperitoneal LPS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1997,273(6):R1870-R1877.
    Leske K,Coon C.The development of feed stuff retainable phosphorus values for broilers.Poultry science,2002,81(11):1681-1688.
    Li H, Xie Z. Molecular cloning of two rat Na+/Pi cotransporters:evidence for differential tissue expression of transcripts. Cellular & molecular biology research,1995,41(5):451.
    Li J H, Yuan J M, Guo Y M, et al. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and tibia parameters of broilers. Asian-Australasian Journal of Animal Sciences,2012,25:552-558.
    Luu K C, Nie G Y, Salamonsen L A. Endometrial calbindins are critical for embryo implantation: evidence from in vivo use of morpholino antisense oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America,2004,101(21):8028-8033.
    Lydyard P M, Whelan A, Fanger M W. Kingdom tittle of Instant Notes in Immunology.2000.
    Mallin M. Impacts of Industrial Animal Production on Rivers and Estuaries Animal-waste lagoons and sprayfields near aquatic environments may significantly degrade water quality and endanger health. American Scientist,2000,88(1):26-37.
    Marks J, Debnam E S, Unwin R J. Phosphate homeostasis and the renal-gastrointestinal axis. American Journal of Physiology-Renal Physiology,2010,299(2):F285-F296.
    Matsumoto T, Fontaine O, Rasmussen H. Effect of 1,25-dihydroxyvitamin D-3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes,1980,599(1):13-23.
    McHardy G J R, Parsons D S. The absorption of inorganic phosphate from the small intestine of the rat. Quart. J. Exp. Physiol,1956,41:398-409.
    Meyer J, Fullmer C S, Wasserman R H, et al. Dietary restriction of calcium, phosphorus, and vitamin D elicits differential regulation of the mrnas for avian intestinal calbindin-D28K and the 1,25-dihydroxyvitamin D3 receptor. Journal of Bone and Mineral Research,1992,7(4):441-448.
    Michelangeli V P, Frampton R I. Transforming growth Factorbeta modulates receptorbinding of calci otropic hormones and G protein-mediated adenylate cyclaseresponses in osteoblast-like cells. Endocrinology,1992,131(3):1383-1389.
    Miles R D, Costa P T, Harms R H. The influence of dietary phosphorus level on laying hen performance, egg shell quality, and various blood parameters. Poultry science,1983,62(6): 1033-1037.
    Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pfliigers Archiv,2004, 447(5):763-767.
    Murer H. Functional domains in the renal type Ⅱa Na/Pi-cotransporter. Kidney international,2002, 62(2):375-382.
    National Research Counsel. Nutrient Requirements of Poultry.9th rev. ed. National Academy Press,Washington, DC.
    Naveh-Many T, Marx R, et al.1990.Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo.The Journal of Clinical Investigation. 86(6):1968-1975.
    Nenei A, Beeker C,Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature,2007,446(7135):557-561.
    Novak J M, Watts D W, Hunt P G, et al. Phosphorus movement through a coastal plain soil after a decade of intensive swine manure application. Journal of environmental quality,2000,29(4): 1310-1315.
    Ogini L M, Worsfold M, Sharp C A, et al. Plasma osteocalcin in healthy Nigerianchildren and in children with calcium-deficiency rickets.Calcif tissueInt,1996,59(6):424-427.
    Owings W J, Sell J L, Balloun S L. Dietary phosphorus needs of laying hens Poultry Science,1977, 56(6):2056-2060.
    Padgett D A, Glaser R. How stress influences the immune response. Trends in immunology,2003,24(8): 444-448.
    Partridge I G, Simon O, Bergner H. The effects of treated straw meal on ileal and faecal digestibility of nutrients in pigs. Archives of Animal Nutrition,1986,36(4-5):351-359.
    Partridge I G. Studies on digestion and absorption in the intestines of growing pigs. British Journal of Nutrition,1978,39(03):539-545.
    Peterlik M,Wasserman R H. Stimulatory effect of 1,25-dihydroxycholecalciferol-like substances from Solanum malacoxylon and Cestrum diurnum on phosphate transport in chick jejunum. The Journal of nutrition,1978,108(10):1673.
    Peterlik M. Phosphate transport by embryonic chick duodenum stimulation by vitamin D< sub> 3. Biochimica et Biophysica Acta (BBA)-Biomembranes,1978,514(1):164-171.
    Pointillart A, Fourdin A, Bourdeau A, et al. Phosphorus utilization and hormonal control of calcium metabolism in pigs fed phytic phosphorus diets containing normal or high calcium levels.Nutrition reports international,1989,40(3):517-527.
    Price P A, Williamson M K, Lothringer J W. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. Journal of biological chemistry,1981,256(24): 12760-12766.
    Punna S, Roland D A. Dietary supplementation of phytase and Hy-Line W-36 pullets fed varying levels of dietary phosphorus from day 1 through 18 wk. The Journal of Applied Poultry Research,2000, 9(1):35-42.
    Punna S, Roland D A. Influence of supplemental microbial phytase on first cycle laying hens fed phosphorus-deficient diets from day one of age. Poultry science,1999,78(10):1407-1411.
    Quamme G A. Phosphate transport in intestinal brush-border membrane vesicles:Effect of pH and dietary phosphate. American Journal of Physiology-Gastrointestinal and Liver Physiology,1985,12 (2):G168-G176.
    Radanovic T, Wagner C A, Murer H, et al. Regulation of Intestinal Phosphate Transport I. Segmental expression and adaptation to low-Pi diet of the type Ⅱb Na+-Pi cotransporter in mouse small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology,2005,288(3): G496-G500.
    Rayfield L S, Brent L, Boylston A, et al. Human fetal lymphocytes require T cell growth factors for cytotoxic responses. Clinical and experimental immunology,1987,69(2):451.
    Rayfield, et al. Human-fetall lymphocytes require t-cell growth-factors for cytotoxic responses. Clinical and Experimental Immunology,1987,69:451-458.
    Reining S C, Liesegang A, Betz H, et al. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflugers Archiv-European Journal of Physiology,2010,460(1):207-217.
    Renfro J L, Clark N B. Parathyroid hormone effect on chicken renal brush-border membrane phosphate transport. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1984,247(2):R302-R307.
    Robey P G. Cell mediated calcification in vitro. In Bonucci E, Ed. Calcification in biological system. Boca Raton:CRC Press,1992,108-127.
    Rodriguez M, Owings W J, Sell J L. Influence of phase feeding available phosphorus on egg production characteristics, carcass phosphorus content, and serum inorganic phosphorus levels of three commercial layer strains. Poultry Science,1984,63(8):1553-1562.
    Roland D A, Bryant M, Bateman A.Do non-GMO enzymes work as well as GMO sources? A comparison of phytase sources in low phosphorus diets fed to layers, the future of food, 2000:153-161.
    Saddoris K L, Fleet J C, Radcliffe J S. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. The Journal of nutrition,2010,140(4):731-736.
    Sahin K, Sahin N, Kucuk O. Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 C). Nutrition Research,2003,23(2):225-238.
    Said N W, Sullivan T W. A comparison of continuous and phased levels of dietary phosphorus for commercial laying hens. Poultry Science,1985,64:1763-1771.
    Sax L. The Institute of Medicine's "Dietary Reference Intake" for phosphorus:a critical perspective. Journal of the American College of Nutrition,2001,20(4):271-278.
    Schroder B, Kappner H, Failing K, et al. Mechanisms of intestinal phosphate transport in small ruminants. British Journal of Nutrition,1995,74(5):635-648.
    Schroder B, Hattenhauer O, Breves G. Phosphate transport in pig proximal small intestines during postnatal development:lack of modulation by calcitriol. Endocrinology,1998,139(4):1500-1507.
    Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. American Journal of Physiology-Renal Physiology,2004,287(1): F39-F47.
    Sharpley A, Daniel T, Wright B, et al. National research project to identify sources of agricultural phosphorus loss. Better Crops,1999,83(4):12-14.
    Shirazi-Beechey S P, Gorvel J P, Beechey R B. Phosphate transport in intestinal brush-border membrane. Journal of bioenergetics and biomembranes,1988,20(2):273-288.
    Siegel H S. Physiological stress in birds. Bioscience,1980:529-534.
    Sohail S S, Roland D A. Influence of dietary phosphorus on performance of Hy-Line W36 hens. Poultry science,2002,81(1):75-83.
    Stanogias G, Pearce G R, Alifakiotis T, et al. Effects of dietary concentration and source of fibre on the apparent absorption of minerals by pigs. Animal feed science and technology,1994,47(3): 287-295.
    Stauber A, Radanovic T, Stange G, et al. Regulation of intestinal phosphate transport Ⅱ. Metabolic acidosis stimulates Na+-dependent phosphate absorption and expression of the Na+-Pi cotransporter NaPi-Ⅱb in small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology,2005,288(3):G501-G506.
    Stein H, Kadzere C, Kim S, et al. Influence of dietary phosphorus concentration on the digestibility of phosphorus in monocalcium phosphate by growing pigs. Journal of Animal Science,2008,86(8): 1861-1867.
    Sugiura S H, Ferraris R P. Contributions of different NaPi cotransporter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout. Journal of experimental biology, 2004,207(12):2055-2064.
    Sukhotnik I, Mogilner J, Krausz M M, et al. Oral arginine reduces gut mucosalinjury caused by ipopolysaccharide endotoxemia in rat. Journal of Surgical Research,2004,122 (2):256-262.
    Takeda E, Yamamoto H, Nashiki K, et al. Inorganic phosphate homeostasis and the role of dietary phosphorus. Journal of cellular and molecular medicine,2004,8(2):191-200.
    Tanaka Y, DeLuca H F. Bone mineral mobilization activity of 1,25-dihydro-xycholecalciferol, a metabolite of vitamin D.Archives of Biochemistry and Biophysics,1971,146:574-578.
    Taylor A N. In vitro phosphate transport in chick ileum:effect of cholecalciferol, calcium, sodium and metabolic inhibitors. The Journal of nutrition,1974,104(4):489-494.
    Tiegs R D, Body J J, Wahner H W, et al. Calcitonin secretion in postmenopausal osteoporosis. New England Journal of Medicine,1985,312(17):1097-1100.
    Tenenhouse H S, Martel J, Gauthier C, et al. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1α-hydroxylase by phosphate. Endocrinology, 2001,142(3):1124-1129.
    Tengjaroenkul B, Smith B J, Caceci T, et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis 100niloticus L.Aquaculture,2000,182: 317-327.
    Uauy R, Stringel G, Thomas R, et al. Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. Journal of Pediatric Gastroenterology and Nutrition,1990,10(4): 497-503.
    Um J S, Paik I K. Effects of microbial phytase supplementation on egg production, eggshell quality, and mineral retention of laying hens fed different levels of phosphorus. Poultry Science,1999,78(1): 75-79.
    Van Cromphaut S J, Dewerchin M, Hoenderop J G J, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:Functional and molecular aspects. Proceedings of the National Academy of Sciences,2001,98(23):13324-13329.
    Van der Klis J D, Versteegh H A, Simons P C, et al. The efficacy of phytase in corn-soybean meal-based diets for laying hens. Poultry Science,1997,76(11):1535-1542.
    Vanbelle C, Halgand F, Cedervall T, et al. Deamidation and disulfide bridge formation in human calbindin D28k with effects on calcium binding. Protein science,2005,14(4):968-979.
    Van Heugten E, Spears J W, Coffey M T. The effect of dietary protein on performance and immune response in weanling pigs subjected to an inflammatory challenge. Journal of animal science,1994, 72(10):2661-2669.
    Waldroup P W, Kersey J H, Saleh E A, et al. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase. Poultry science,2000,79(10):1451-1459.
    Walling M W, Hartenbower D L, Coburn J W, et al. Effects of 1α,25-,24< i> R,25-, and 1α,24< i> R,25-hydroxylated metabolites of vitamin D< sub> 3 on calcium and phosphate absorption by duodenum from intact and nephrectomized rats. Archives of biochemistry and biophysics,1977,182(1):251-257.
    Walter E D, Aitken J R. Phosphorus requirements of laying hens confined to cages. Poultry Science, 1962,41(2):386-390.
    Wasserman R H, Taylor A N. Intestinal absorption of phosphate in the chick:effect of vitamin D3 and other parameters. The Journal of nutrition,1973,103(4):586-599.
    Wasserman R H, Taylor A N. Vitamin D3-Induced Calcium-Binding Protein in chick Intestinal Mucosa Scince,1966,152 (6):791-793.
    Webel D M, Finck B N, Baker D H, et al. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. Journal of animal science, 1997,75(6):1514-1520.
    Werner A, Kinne R K H. Evolution of the Na-Pi cotransport systems. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2001,280(2):R301-R312.
    Werner A, Moore M L, Mantei N, et al. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proceedings of the National Academy of Sciences,1991,88(21): 9608-9612.
    Whittemore C T, Smith W C, Thompson A. The availability and absorption of calcium and phosphorus in the young growing pig. Animal Production,1972,15(03):265-271.
    Kie H, Rath N C, Huff G R, et al. Effects of Salmonella typhimurium lipopolysaccharide on broiler chickens. Poultry science,2000,79(1):33-40.
    Ku H, Bai L, Collins J F, et al. Age-dependent regulation of rat intestinal type Ⅱb sodium-phosphate cotransporter by 1,25-(OH) 2 vitamin D3. American Journal of Physiology-Cell Physiology,2002, 282(3):C487-C493.
    Ku H, Uno J K, Inouye M, et al. Regulation of intestinal NaPi-Ⅱb cotransporter gene expression by estrogen. American Journal of Physiology-Gastrointestinal and Liver Physiology,2003,285(6): G1317-G1324.
    Van F, Kersey J H, Waldroup P W. Phosphorus requirements of broiler chicks three to six weeks of age as influenced by phytase supplementation. Poultry Science,2001,80(4):455-459.
    Yan F, Angel R, Ashwell C M. Characterization of the chicken small intestine type Ⅱb sodium phosphate cotransporter. Poultry science,2007,86(1):67-76.
    Yin Y L, Huang R L, Li T J, et al. Dry matter and phosphorus digestibility respond differentially to graded dietary levels of sodium chloride intake inweanling pigs.The 9th international symposium of DAPP,2003,5:5-15.
    Zhang H J, Guo Y M, Tian Y D, et al. Dietary conjugated linoleic acid improves antioxidant capacity in broiler chicks. British poultry science,2008,49(2):213-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700