用户名: 密码: 验证码:
叶腊石矿物学特征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶腊石(pyrophyllite)为一含水层状铝硅酸盐粘土矿物,化学式为Si4Al2O10(OH)2。因其优异的耐化学腐蚀、耐高温、较低的导电与导热及低膨胀等特性,而被广泛应用于陶瓷、涂料、塑料、橡胶、传压介质、耐火材料、填料、医药及吸附材料等领域。
     本课题研究中首先采用粉晶R射线衍射(XRD)、高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、场发射扫描电镜(FESEM)、X射线荧光光谱(XRF)、傅立叶红外光谱(FTIR)等测试方法对浙江青田叶腊石的矿物学特征进行了较系统的研究;其次,分别就在热处理过程中叶腊石呈色的改变机制及机械力研磨过程中其微观形貌、物相变化特征进行了较深入的探讨。与此同时,对叶腊石草酸酸洗浸出液的析晶体的热处理后产物微结构及热相变进行了初步探讨;再次,采用高能球磨的方法结合喷雾干燥工艺制备出了分散的单层纳米板片与球形的叶腊石粉体;最后,采用机械力化学法制备了Ti02/叶腊石基复合颜料,并研究了复合配比、机械力球磨时间强度、物料颗粒粒径与复合颜料性能之间的相互关系。
     通过上述工作取得了以下主要结果:
     1.叶腊石矿物颗粒微结构中最基本的构成单元为纳米板片,且该板片多呈聚集态,单层板片面积大小不一,厚度约为(8±2)nm。原矿粉体的XRF分析结果表明青田叶腊石原矿混合物中SiO2与Al2O3的分子个数比为6.2,明显高于理想叶腊石中Si02与A1203的分子个数比4.0。HRTEM对叶腊石晶体结构的研究证实青田叶腊石具有典型的单斜晶系特征,该结论与叶腊石粉晶X射线衍射结论一致,且叶腊石原矿粉体的XRD结论证实其伴生矿为石英,该结论与XRF所获得的青田叶腊石的“富硅”特征吻合。此外,HRTEM结果表明叶腊石晶格结构中存在着较明显的晶体缺陷。同时,在高能电子束辐照作用下,叶腊石晶体结构发生了明显的结构破坏,并在辐照下最终转变为非晶态结构。
     2.叶腊石粉体在热处理过程中,随着煅烧温度的提高,叶腊石粉体的呈色出现由灰白色至淡红色并最终呈现雪白色的颜色渐变特征。相比于叶腊石原粉的片层状形貌结构特征,不同温度下煅烧后粉体微结构无明显改变,粉体在热处理条件下的呈色改变机制与粉体微结构及其中所含有机物成分无直接联系。笔者初步推测叶腊石中杂质元素Fe为该矿物致色的主要因素,且热处理温度决定Fe在叶腊石晶体结构中的赋存状态或者Fe3+/Fe2+量比,进而决定该矿物在不同温度下的呈色。
     3.在研磨过程中,叶腊石微粉颗粒粒径在逐渐减小,但随着研磨强度的进一步加大,粉体颗粒因其表面能的增大而出现团聚。不同研磨强度下,研磨后粉体的形貌存在明显差异。较大研磨强度下小颗粒粉体因团聚而呈“准球形”的团聚体,且随着研磨的进行团聚颗粒粒径逐渐增大。较低研磨强度下粉体随着研磨时间的延长呈粒径减小行为,但是叶腊石片层状形貌特征并不改变。
     4.在研磨过程中叶腊石粉体(原矿混合物)中的叶腊石红外光谱的变化表现出显著的惰性特征,该矿物中游离态二氧化硅是导致该叶腊石在研磨过程中出现红外惰性的直接原因。与此同时,在研磨过程中,叶腊石结构中的化学键的破坏也存在一先后的顺序,表现为:在研磨的最初阶段,叶腊石的1120cm-’处的特征谱带强度较迅速的减小,该现象表明硅氧四面体中Si-O键的破坏;随着研磨的进一步进行,连接在铝氧八面体中心原子A1上的-OH,其特征谱带为3673,948,854和835cm-1逐渐消失,该特征表明铝氧八面体结构在机械力作用下逐渐破坏;最后,在叶腊石研磨的最终阶段,代表Si-O-Al化学键的518cm-1谱带强度慢慢减小,上述现象表明,在机械力作用下,硅氧四面体与铝氧八面体框架结构在研磨的最终阶段受到破坏。
     5.研磨后叶腊石粉体的XRD与HRTEM测试表明,研磨作用使得叶腊石晶体结构发生明显改变,且由初期的叶腊石相生成偏叶腊石相,终产物为石英和无定形态铝硅氧化物,其中终产物中的晶态的石英源白叶腊石原矿中的伴生相。
     6.叶腊石原矿的草酸酸洗浸出液的析晶产物由铁、氧及少量的铝元素组成,上述析晶体产物的XRD结果表明其成份主要为FeOOH与H2C2O4·2H2O的混合相。浸出液蒸馏析出产物在焙烧过程中,随着焙烧温度的升高,铁氧体经历了由FeOOH→γ-Fe2O3→α-Fe2O3的物相转变。特别值得注意的是,HRTEM与SAED对析出晶体在不同温度下焙烧产物的物相分析与同一样品的XRD分析的结果存在极其明显的差异,该差异应归因于HRTEM中高能电子束对样品晶体结构的辐照影响所致。
     7.高能球磨、喷雾干燥联用工艺制备了干燥分散的单层纳米板片与球形叶腊石粉体。叶腊石粉体在初步研磨后,经喷雾干燥可得到分散的叶腊石纳米板片,板片厚度为(8士2)nm,其长轴粒径大小为0.2-1.2μm。粉体在较长时间的研磨并喷雾干燥后,可获得均匀粒径的准球形的叶腊石聚集体,其中单个球形微粒的直径约2.5μm,经进一步的FESEM观察,球形颗粒由直径为100nm左右的叶腊石纳米板片团聚形成。
     8.以叶腊石微粉为基底材料、金红石型钛白粉为包覆基质,利用内核化学表面改性与机械研磨的协同效应,实现叶腊石、钛白粉的类核壳包覆结构,制备得到新型的复合钛白粉体。HRTEM、EDX、粉体白度以及遮盖力测试结果表明钛白粉与叶腊石基质达到较好的包覆,复合粉体可实现颜料级别钛白粉的替代。
Pyrophyllite (Al2Si4O10(OH)2), which exhibits good physicochemical characteristics, such as low thermal and electrical conductivity, low expansion coefficient, low reversible thermal expansion and excellent reheating stability, has been widely used in many industries, principally in ceramic, plant, plastic, rubber, pressure transmission medium, refractory material, filler, medical carrier and adsorption material.
     In the present work, the mineralogical characterizations of pyrophyllite from Qingtian were firstly investigated by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray Fluorescence (XRF) and Fourier transform Infrared spectroscopy (FTIR) and field emission-scanning electronic microscope (FE-SEM). Secondly, the efforts of grinding on structural alteration and phase transformation of pyrophyllite were discussed. At the same time, the phase transformation and crystal microstructure during heat-treatment for the leachate of pyrophyllite precipitation by oxalic acid were investigated. Next, Using spray drying technique combined with high energy ball milling for the preparation of dispread pyrophyllite particles with lamellar or spheroidal structure. Finally, the composite powder was prepared by using pyrophyllite and futile titanium oxide powder as the substrates and outer covered material respectively, and the relations between the quaitly of pigment and some facts, for example, milling time, particle size of pyrophyllite and futile titanium, the rate of pyrophyllite and futile titanium were investiged.
     Based on the above works, the main conclusions were drawn as following:
     1. A composite laminal structure of pyrophyllite is found, and the thickness of the lamina with irregular surface area is about (8±2) nm. The result of XRF shows the SiO2/Al2O3molar ratio is6.2, which is higher than that calculated for an ideal pyrophyllite (ratio=4.0). The crystal system of pyrophyllite from Qingtian deposit is monoclinic by powder HR-TEM analysis, and the monoclinic pyrophyllite is corroborated well by X-ray diffraction (XRD) analysis. Meanwhile, quartz is the associated phase in raw ore, and the fact is according with the characteristic of rich-silicon by XRF analysis. In addition, it is clearly found that the crystal defect exists in the microstructure of pyrophyllite. The high energy electron beam irradiation induces the changes in morphology of clay mineral particles, and that results in phase transformation from crystalline to amorphous.
     2. The coloring mechanism of pyrophyllite before and after heating were investigated by reflection spectra, chemical analysis, differential thermal analysis (DTA), Fourier transform Infrared spectroscopy (FTIR) and field emission-scanning electronic microscope (FE-SEM). The results show that the color of pyrophyllite powder is variable from grayish white to light pink and turns to the color of snow-white finally with increasing firing temperature. Compared to the original pyrophyllite, the laminal microstructure of pyrophyllite has no changed after high-temperature heating, and the microstructure and organic pigment do not play a role in the coloring of the pyrophyllite.
     3. The mechanical treatment by grinding produces a decrease in the particle size of original pyrophyllite with increasing time. With the increase of grinding intensities, the powder appears re-aggregation due to the high surface energy of active particle. The morphologies of pyrophyllite powder are different after grinding under different grinding intensities. The particles gradually have the characteristic of "torispherical" under high grinding intensitie, and the agglomerates are constituted by a greater number of welded particles with the increasing grinding intensity. On the other hand, the original lamellar structure does not changed as the gradual size reduction.
     4. The perverse characteristics of IR spectra reappear by intensive grinding, and the phase of quartz takes a mainly role in affecting the structural alteration. The rate of destruction of chemical bonds in pyrophyllite structure is not the same. It is shown as below, in the first step of milling, the peak at1120cm-1shows a rapid decrease in the intensity during the first step min of grinding and is absent from the IR spectrum of the sample, indicating breakdown of the Si-O bonds, namely, destruction of the tetrahedral sheets. As the grinding goes, the disappearance of the bands at3673,948,854and835cm-1indicates that OH groups, coordinating central atoms (mainly Al) in the octahedral, are released and octahedral sheets are damaged. Finally, the intensity of the band at518cm-1decreased partly with grinding time, indicating breakdown of the Si-O-Al bonds, namely, destruction of the linkages between the octahedral and the tetrahedral sheets.
     5. To our surprised, a sequential phase transformation from pyrophyllite, through the anhydride phase, eventually to amorphous alumina-silicate aggregates was firstly observed. Meanwhile, it is found that the quartz-containing pyrophyllite was resistant to the mechanical destruction. Furthermore, dry grinding can cause the lattice dilatation and some stacking faults, and the influence by grinding was more significant along the c-axis of silicate crystal structure.
     6. The characetristic of phase transformation and the crystal microstructure during heat-treatment for the leachate of pyrophyllite precipitation by oxalic acid were investigated by using high resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray microanalysis (EDX) techniques, selecting area electron diffraction (SAED) and X-ray powder diffraction (XRD). The following results are obtained:The crystallization consists of Fe, O and a little Al, and the constituents of that are mainly FeOOH and H2C2O4·2H2O, which is the heated product of the leachate of pyrophyllite precipitation by oxalic acid. A sequential phase transformation from FeOOH, through the y-Fe2O3, eventually to a-Fe2O3is observed as the temperature increasing. In addition, the crystal phases after annealing at the same temperature revealed by HRTEM are different from that obtained from XRD ananlysis. It is induced clearly that high energy electron-beam irradiation induced crystal structural change.
     7. The present study is focused on the procedure of spray drying technique combined with high energy ball milling for the preparation of dispread pyrophyllite particles with lamellar or spheroidal structure. To get the desired pyrophyllite particles but not amorphous alumina-silicon aggregates, the effect of grinding time by high energy ball milling (HEBM) on the resulting particles is studied. The products are characterized in terms of their crystalline phase, particle size, particle morphology, specific surface area and structural modifications. It has been observed that the dispersed pyrophyllite particles with lamellar or spheroidal structure are achieved using spray drying technique combined with high energy ball milling. Meanwhile, after ground for a certain time, pyrophyllite particle retains the same structural and crystalline character as original one after the composite treatment technologies. Furthermore, it is indicated that spray drying treatment coupled with HEBM yields smaller dispread particles with different physical characteristics, while the spray drying does not induce the crystal structure change.
     8.Using pyrophyllite and futile titanium oxide powder as the substrates and outer covered material respectively, the compound powder was got with using the cooperative efects of chemical and the mechanical surface modification, which had the characteristic of quasi-nuclear shell structure. The high resolution transmission electronic microscope, energy dispersion X-ray Spectrum, whiteness and hiding test results indicated the pyrophyllite surface was coated with titanium oxide better,the compound powder might take place ofthe pigment level titanium oxide powder.
引文
[1]Kogure T, Jige M, Kameda J, et al. Stacking structures in pyrophyllite revealed by high-resolution transmission electron microscopy (HRTEM)[J]. American Mineralogist,2006,91(8-9):1293-1299
    [2]Harben P W. Pyrophyllite industrial minerals handy book[M]. London:Industrial minerals information,1995:143-145
    [3]Robertson R H S. Industrial uses of clay minerals[J]. Silicates Industriels,1973, 38(1):33-43
    [4]Sanchez Soto P J, Perez Rodriguez J L. Caracteristicas generales, propiedades, yacimientos y applicaciones de pirofilita[J]. Boletin de Sociedad Espanola de Ceramica Vidrio,1998,37(5):359-368
    [5]Rieger K C. Pyrophyllite minerals review[J].American Ceramic Society Bulletin,1997,76(6):124-125
    [6]张巍,戴文勇,李雪东.热处理对矾土-红柱石-腊石喷涂耐材料性能的影响[J].世界钢铁,2010,10(5):67-70
    [7]韦家新,林峰,何绪林,等.影响立方氮化硼单晶合成效果的工艺探讨[J].超硬材料工程,2006,18(5):15-17
    [8]张景峰,田一光,林实俄,等.叶蜡石基改性复合粉体部分替代N330对SBR/N330纳米复合材料性能的影响[J].材料工程,2010,(11):35-38
    [9]周艳,谢佑南,张俭,等.叶蜡石及其改性粉体对亚甲基兰吸附行为的研究[J].高校化学工程学报,2010,24(1):47-51
    [10]贾玉宝,秦海川.几种低温快烧陶瓷原料[J].山东陶瓷,2004,27(4):29-32
    [11]孙乙庭.叶蜡石制备介电陶瓷及其性能研究[D].长春:吉林大学,2009
    [12]李蘅,李毅,徐文忻,等.某些产地叶蜡石传压介质材料研究[J].非金属矿,2004,27(5):19-21
    [13]Lambert S D, Graham N J D, Sollars C J, et al. Evaluation of inorganica adsorbents for the removal of problematic textile dyes and pesticides[J]. Water science and technology,1997,36(2):173-180.
    [14]Robertson R H S. Industrial uses of clay minerals[J]. Silicon Industry,1973, 38(1):33-43
    [15]Gruner J W. The crystal structure of talc and pyrophyllite[J]. Zeitschrift. Fur Kristallographie,1934,88,412-419
    [16]Hendricks S B. Variable structures and continuous scattering of X-rays from layer silicate lattices[J]. Physical Review,1940,57(5):448-454
    [17]Rayner J H, Brown G. Structure of pyrophyllite[J]. Clays and Clay Minerals, 1965,13(2),73-84
    [18]Zvyagin B B, Mishchenko K S, Soboleva S V. Structure of pyrophyllite and talc in relation to polytypes of mica-like minerals[J]. Kristallografiya,1969,13,599-604
    [19]Brindley G W, Wardle R. Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride [J], American Mineralogist,1970,55(8):1259-1272
    [20]Wardle R, Brindley G W.The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate[J]. American Mineralogist,1972,57(5-6):732-750.
    [21]Giese I, Hydroxyl Orientation in Pyrophyllite[J]. Nature,1973,241:151-151
    [22]汪灵,张振禹.2:1型层状硅酸盐的羟基定位结构.科学通报,1995,40,(22):2078-2079
    [23]Famer V C. Infrared Spectra of Minerals[M]. Beijing:Science Press,1982.
    [24]林隆述,章正刚.滑石和叶腊石红外光谱的因子群分析[J].矿物岩石,1986,6(2):1-8
    [25]彭文世,刘高魁.矿物热转变的红外光谱研究[J].景德镇陶瓷,1988,(4):35-39
    [26]陈大梅,姜泽春,张惠芬.我国叶腊石的差热和红外光谱研究[J].矿物学报,1991,11(1):92-96
    [27]蔡秀成,张惠芬,富毓德,等.天然叶蜡石及其热处理产物的电子顺磁共振(EPR)研究[J].矿物学报,1990,10(1):15-22
    [28]Bentayeb A, Amouric M, Olives J, et al. XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications [J]. Applied Clay Science, 2003,22(5):211-221
    [29]陈全庆,卢星,王幼文.叶腊石加热过程中相变的电子显微镜研究[J].硅酸 盐学报,1988,16(5):385-392
    [30]张惠芬,张振国,马钟玮,叶腊石、高岭石和迪开石的吸收光谱研究[J].矿物学报,1990,10(1):23-28
    [31]毛立新.火焰原子吸收光谱法测定叶腊石、石英中铁[J].丽水学院学报,1997,19(5):25-26
    [32]李国珍,杨元法.叶腊石的Zeta电势测定研究[J].浙江大学学报(自然科学版)1990,24(3):420-423
    [33]Levine A K, Joffe J S, Fixation of potassium in relation to exchange capacity of solid:V. Mechanism of fixation[J]. Solid science.1947,63:407-406
    [34]Hayashi H, Koshi K, Hamada A, Sakabe H, Structure change of pyrophyllite by grinding and its effect on toxicity of the cell[J]. Clay science,1986,1:99-108
    [35]Nemecz E. Pyrophylite 1-Tc occurrence at pfizmand (Hungary) in fluorine-activized environment[J].1984,Acta Geol Hung,27:191-202
    [36]Perez-Rodriguez J L, Madrid Sanchez Del Villar L, Sanchez Soto P J. Effects of dry grinding on pyrophyllite [J]. Clay minerals,1988,23(4):399-410.
    [37]Perez-Rodriguez J L, Sanchez Soto P J. The influence of the dry grinding on the thermal behavior of pyrophyllite[J]. Jounal of Thermal Analysis,1991,37(7): 1401-1413.
    [38]Sanchez Soto P J, Justo A, Perez-Rodriguez J L et al. Structural alteration of pyrophyllite by dry grinding as studied by IR spectroscopy[J]. Journal of Material Sci ence Letter,1994,13(12):915-918.
    [39]Perez-Rodriguez J L,Wiewiora A, Ramirez-Valle V et al. Preparation of nano-pyrophyllite:Comparative study of sonication and grinding[J]. Journal of Physics and Chemistry of Solids,2007,68(5-6):1225-1229.
    [40]Heller L. The thermal transformation of pyrophylliteto mullite[J]. American Mineralogist,1962,47:156-160.
    [41]MacKenzi K J D, Brown 1 w M, Meinhold R H, etal. Thermal reactions of pyrophyllite studied by high resolution solid-state 29Si and 27Al nuclear magnetic resonance spectroscopy[J]. Journal of American Ceramie Society,1985,68(5): 266-272
    [42]汪灵,张振禹.叶腊石高温物相及其演化特征[J].科学通报,1996,41(13):1201-1204
    [43]魏存弟,赵峰,马鸿文,等.叶蜡石加热相变及其演化特征[J].吉林大学学报(地球科学版),2005,35(2):150-154
    [42]范良明,杨水富.浙江青田石及其颜色成因研究[J].硅酸盐通报,1984,5:1-5
    [44]Sidhu, P S, Gilkes, R J, Cornell, R M, et al. Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids[J]. Clays and Clay Minerals.1981, 29:269-276
    [45]Chiarizia R, Horwitz E P. New formulations for iron oxides dissolution[J]. Hydrometallurgy,1999,27(3):339-360
    [46]Ambikadevi V R., Lalithambika M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Appllied Clay Science,2000,16(3-4):133-145.
    [47]Veglio F, B. Passariello, Barbaro M, et al. Marabini A M. Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids[J]. International Journal of Mineral Processing,1998,54(3-4):183-200
    [48]Chapman J B., Dominik J W, Yao S, et al. Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids[J]. Geochimica et Cosmochimica Acta,2009,73 (5):1312-1324
    [49]Mandal S K, Banerjee P C. Iron leaching from China clay with oxalic acid:effect of different physico-chemical parameters[J]. International Journal of Mineral Processing,2004,74:263-270
    [50]董楠.叶蜡石微粉漂白实验研究[D].杭州:浙江工业大学,2011
    [51]于翠.硬脂酸表面改性叶腊石增白微粉研究[D].杭州:浙江工业大学,2010
    [52]Yuichi Kobayashi, Etsuro Kato. Low-temperature fabrication of anorthite ceramics[J]. Journal of the American Ceramic society,1994,77(3):833-834
    [53]顾幸勇,姜文炜,史继霞.叶蜡石在低温制备钙长石质陶瓷基片中的应用研究[J].陶瓷学报,2000,21(3):141-146
    [54]张培萍,孙乙庭,于德利,等.低温低介电陶瓷的制备及其性能影响因素[J].吉林大学学报(地球科学版),2010,40(6):1446-1449
    [55]王守平,刘得利,孙俊才,等.耐酸陶瓷的研制及其性能研究[J].陕西科技大学学报,2006,24(4):30-33
    [56]王改民,胡余沛,马秋花.叶蜡石、白云石对陶瓷结合剂磨具微观结构和性能的影响[J].金刚石与磨料磨具工程,2007,158(2):63-65
    [52]Afanasev Y V, Belyaev, Polonskii Y A.Pyrophyllite refractories for steel ladles[J]. Translated from Ogneupory,1970,10:6-10
    [53]罗驹华,侯贵华,张少明.高纯莫来石制备方法评述[J].材料科学与工程,2002,20(4):618-621
    [54]Ekstrom T, Nygren M. SiAlON ceramic[J]. Journal of the American Ceramic society,1992,75(2):259-276
    [55]Ramesh P D, Rao K J. Preparation and characterization of single phase β-SiAlON[J]. Journal of the American Ceramic society,1995,78(2):395-400
    [56]陈天虎,王道轩,方啸虎,等.合成金刚石生产中叶蜡石传压密封材料矿物学研究[J].矿物学报,2001,21(3):547-550
    [57]徐国平,郑日升,梁红原.叶蜡石的矿物成分对合成金刚石的影响[J].金刚石与磨料磨具工程,2005,156(2):64-66
    [58]Laskowski. J. S. Electrokinetic measurements in aqueous solutions of weak electrolyte type surfactants[J]. Journal of colloid interface science,1993, 159(2):349-353
    [59]Sayilkan H, Erdemoglu S, Sener S. Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions[J]. Journal of colloid and interface science,2004,275(2):530-538
    [60]Gucek A, Sener S, Bilgen S. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions[J]. Journal of colloid and
    interface science,2005,286(1):53-60
    [61]Saxena S, Prasad M, Amritphale S S. Adsorption of cyanide from aqueous solutions at pyrophyllite surface[J]. Separation and purification technology,2001, 24(1-2):263-270
    [62]Scheidegger A M, Sparks D L. Kinetics of the formation and the dissolution of nickel surface precipitates of pyrophyllite[J]. Chemical Geology,1996, 132(1-4):157-164
    [63]周艳.叶蜡石粉体的吸附性能研究[D].杭州:浙江工业大学,2009
    [64]]姚文君,张培萍,马丽艳,等.叶蜡石的有机活化及其对对苯二酚的吸附[J].应用化学,2008,25(6):689-692
    [65]Aubourg P F, Wolf W.W. Glass Fibers-Glass Composition Research Presenred at Glass Division Meeting (Grossinger, NY), American Ceramics Society, Oct,1984
    [66]朱及天.无碱玻纤池窑拉丝级叶腊石微粉产品的开发[J].矿产综合利用,2002,(4):41-44
    [67]Ramier J, Gauthier C, Chazeau L, et al. Payne effect in silica-filled styrene-butadiene rubber:influence of surface treatment[J]. Journal of Applied Polymer Sciebce,2006,45(3):286-298
    [68]Wu G, Asai S, Sumita M, et al. Estimation of flocculation structure in filled polymer composites by dynamic rheo logical measurements[J]. Colloid and Polymer Science,2000,278(3):220-228
    [69]Ou Y C, Yu Z Z. Effects of alkylation of silica filler on rubber reinforcement[J]. Rubber chemistry and technology,1994,67(5):834-844
    [70]杨林泰,周丽玲,付丙秀.改性叶蜡石在NR胶料中的应用[J].橡胶工业,2008,55(12):725-729
    [71]张远喜,庄涛,王海南,等.改性剂对白炭黑/叶腊石补强SBR性能的影响[J].弹性体,2011,21(3):39-42
    [72]Konta I. Clay and man:Clay raw materials in the service of man[J]. Applied Clay Science,1995,10 (4):275-335
    [73]严俊,董楠,方伟,等.化学机械法制备叶蜡石基复合钛白粉体研究[J].非金属矿,2011,34(2):17-19
    [74]Davidovits J. Geopolymers and Geopolymeric materials[J]. Journal of Thermal Analysis and Calorimetry,1989,35(2):429-441
    [75]Davidovits J. Synthetic mineral polymer compound of the silicoaluminates family and preparation process[P]. US Patent 4,472,199,1984
    [76]Palomo A. Glasser F. P. Chemically-bonded cementitious materials based on metakaolin. Br.Ceram.Trans. J 1992,91(4):107-112
    [77]代新祥,文梓芸.土壤聚合物水泥[J].新型建筑材料,2001,(6):34-35
    [78]Davidovits J.Recent progresses in concretes for nuclear waste and uranium waste containment. Concrete international,1994,16(12):53-58
    [79]Sanchez Soto P J, Perezrodriguez J L. SEM study of pyrophyllite high-temperature transformations[J]. Journal of Materials Science,1989,24(10): 3774-3778
    [80]Hobbs Linn W. Electron-beam sensitivity in inorganic specimens[J]. Ultramicroscopy,1987,23(3-4):339-344
    [81]Kooi B. J. and Hosson J. T M.D. Phase transformation of manganese precipitates in copper studied with transmission electron microscopy[J]. Acta Materialia,1998, 46(6):1909-1922
    [82]Hooshiar A, Uhlik P, Kaminsky H W, Shinbine A, Omotoso O, Liu Q, Lvey D G, Etsell T H, High resolution transmission electron microscopy study of clay mineral particles from streams of simulated water based bitumen extraction of Athabasca oil sands[J]. Applied Clay Science,2010,48(3):466-474
    [83]Birajdar B.L, Chopra A., Alexe M., Hesse D.. Crystal defects and cation ordering domains in epitaxial PbSc0.5Ta0.5O3 relaxor ferroelectric thin films investigated by high-resolution transmission electron microscopy. Acta Materialia,2011,59 (10): 4030-4042
    [84]Zhao H M. Experimental investigation on dehydration of some clay minerals in electron microscope [J]. Chinese Science Bulletin,1987,33(2):262-263
    [85]Xin R L, Leng Y, Wang N. In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation[J]. Journal of Crystal Growth,2006,289(1):339-334
    [86]Iijima S, Buseck P R. Experimental study of disordered mica structures by high-resolution electron microscopy[J]. Acta Crystallographica Section A,1978,34(5): 709-719
    [87]Amouric M, Baronnet A. Effects of early nucleation condition on synthetic muscovite polytypism as seen by high-resolution transmission electron microscopy[J]. Physics and Chemistry of Minerals,1983,9(3-4):146-159
    [88]Banos J O, Amouric M. Interlayering and interlayer slip in biotite as seen by HRTEM[J]. American Mineralogist,1983,68(7-8):754-758
    [89]Xu H, Veblen D R. Periodic and nonperiodic stacking in biotite from the Bingham Canyon porphyry copper deposit, Utah[J]. Clays and Clay Minerals,1995,43(2): 159-173
    [90]Kogure T, Nespolo M. First occurrence of a stacking sequence including (+/-60 degrees,180 degrees) rotations in Mg-rich annite[J]. Clays and Clay Minerals,1999, 47(6):784-792
    [91]Kogure T, Nespolo M. Atomic structures of planar defects in oxybiotite[J]. American Mineralogist,2001,86(3):336-340
    [92]Baronnet A, Nitsche S, Kang Z C. Layer stacking microstructures in a biotite single crystal. A combined HREM-AEM study[J]. Phase Transitions,1993, 43(1):107-128
    [93]Bons A J, Schryvers D. High-resolution electron microscopy of stacking irregularities in chlorites from the central Pyrenees[J]. American Mineralogist,1989, 74(9-10):1113-1123
    [94]Kogure T, Inoue A. Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM)[J]. American Mineralogist,2005,90(1):85-89
    [95]Bobos I, Duplay Joelle, Rocha J, Gomes C. Kaolinite to halloysite-7A transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal[J]. Clays and Clay Minerals,2001,49(6):596-607
    [9]陈涛,王河锦.天津蓟县长城系串岭沟组伊利石微结构特征[J].中国科学D辑:地球科学,2007,37(7):894-899
    [97]Chen T, Wang H J. Determination of layer stacking microstructures and intralayer transition of illite polytypes by high-resolution transmission electron microscopy (HRTEM)[J]. American Mineralogist,2007,92(5-6):926-932
    [98]汪灵.中国东南沿海叶腊石成矿学及叶腊石热稳定性研究[D].长沙:中国科学 院长沙大地构造研究所,1994
    [99]张立德.纳米材料[M].北京:化学工业出版社,2001.39-42
    [100]Ruijter W, J. de Sharma R, Mccartney M R, et al. Measurement of lattice-fringe vectors from digital HREM images:experimental precision[J]. Ultramicroscopy,1995, 57(4):409-422
    [101]David B W, Carter C B. Transmisson Electron Microscopy:A text book for materials science[M]. New York:Plenum Press,1996.185-359
    [102]黄孝瑛.材料微观结构的电子显微学分析[M].北京:冶金工业出版社,2008.15-206
    [103]朱静,叶恒强,王仁卉,等.高空间分辨分析电子显微学[M].北京:科学出版社,1987.27-108
    [104]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062
    [105]John.S.Strong localization of photonics in certain disordered dielectric super lattices[J]. Physical Review Letters,1987,58(20):2486-2489.
    [106]Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric crystals by multibeam laser interference into a photopolymerizable resin[J]. Physical Review Letters,1990,65(25):3152-3155
    [107]Li Z Y, Wang J. Creation of partial band gaps in anisotropic photonic-band-gap structure[J]. Physical Review B,1998,58(7):3721-3729
    [108]Yablonovitch E. Photonic band gap structures[J]. Journal of Optical Society of American B,1993,10(2):283-294
    [109]Fink Y, Winn J N, Fan S, et al. A dielectric omnidirectional reflector[J]. Science, 1998,282:1679-1682
    [110]Paker A R, McPhedran R C, McKenzie D R et al. Photonic engineering-Aphrodite's iridescence [J]. Nature,2001,409(6816):36-37
    [111]Mends R E, Malden P J. Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions [J]. Clay Minerals,1975,10(5):313-345
    [112]亓利剑,袁心强,林嵩山.高温热处理橙色蓝宝石的赋色机制[J].宝石与宝石 学杂质,2002,4(4):1-5
    [113]Li Rongwu, Yang Lei, Li Guoxia,et al. Nettron activation analysis and Mossbauer spectrpscopy research on cloring mechanosm of Chinese Ru porcelain[J]. Chinese Science Bulletin,2002,47(14):1163-1166
    [114]应育浦,李哲.穆斯堡尔谱在矿物学中的应用[J].北京:地质出版社,1877.28-89
    [115]王德强,郭九皋,王辅亚,等.蒙脱石中铁的赋存状态研究[J].矿物学报,1996,16(1):62-65
    [116]Sherman D M, Vergo N. Optical (diffuse reflectance) and Mossbauer spectra of Cpxmossbauer spectroscopic study of nontronite and related Fe-bearing smectues[J]. American Mineralogist,1988,73:1346-1354
    [117]Johnson J H, Cardile C M. Iron substitution in montmorillonite, illite and glaucorute by 57Fe Mossbauer spectra of Cpx mssbauer spectroscopy Clays and Clay Minerals,1987,85 (8):170-178
    [118]Cardile C M, Johnson J H. Fe Mossbauer spectroscopy of montmorillonites:A interpretation. Clays and Clay Minerals,1986,34 (1):303-313
    [119]汪灵.中国叶腊石矿及其应用简介.地质与勘探,1996,32(6):24-27
    [120]Kuk Cho, Hankwon Chang, Dae Sup Kil et al. Synthesis of dispersed CaCO3 nanoparticles by the ultrafine grinding[J]. Journal of Industrial and Engineering Chemistry,2009,15(2):243-246
    [121]Sanchez Soto P J, Ignacio Varona, Perez-Rodriguez J L et al. Effects of dry grinding on the structural changes of kaolinite powders [J]. Journal of American Ceramic Socociety,2000,83(7):1649-1657
    [122]Frost R L, Horvath E, Mako E, et al.The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide[J]. Journal of Colloid and Interface Science,2003,265(2):386-395
    [123]Miller J G, Oulton T D. Prototropy in kaolinite during percussive grinding[J]. Clays and Clay Minerals,1970,18:313-323
    [124]Miller JG, Oulton T D. Some effects of grinding kaolinite with potassium bromide[J]. Clays and Clay Minerals,1972,20:389-390
    [125]Junya Kano, Miyuki Miyazaki, Fumio Saito. Ball mill simulation and powder characteristics of ground talc in various types of mill [J]. Advanced Powder Technology,2000, 11(3):333-342
    [126]Kano J, Saito F. Correlation of powder characteristics of talc during planetary ball milling with balls impact energy simulated by the particle element method[J]. Powder Technology,1998,98(2):166-170
    [127]Kano J, Chujo N, Saito F. A method for simulating the three-dimensional motion of balls under presence of a powder sample in a tumbling mill[J]. Advanced Powder Technology,1997,8(1):39-51
    [128]Tanaka T. A new concept applying a final fineness value to grinding mechanism □ grinding tests with frictional and impulsive force[J]. Kagaku-kougaku,1954, 18:160-165
    [129]Filio J M, Sugiyama K, Saito F, et al. Effect of dry grinding on the structures and physical properties of pyrophyllite and talc by a planetary ball mill[J]. International Journal of the Society Materials Engineering Resources,1993, 1:140-145
    [130]Filio J M,Sugiyama K, Saito F et al. A study on talc ground by tumbling and planetary ball mills[J]. Powder Technology,1994,78(2):121-127
    [131]Jana Hrachova, Peter Komadel, Vladimir Stefan Fajnor. The effect of mechanical treatment on the structure of montmorillonite[J]. Materials Letters,2007, 61(16):3361-3365.
    [132]Dellisanti F, Minguzzi V, Valdre G, Thermal and structural properties of Ca-rich montmorillonite mechanically deformed by compaction and shear[J]. Applied Clay Science,2006,31(3-4):282-289.
    [133]Hrachova J, Madejova J, Billik P, et al. Dry grinding of Ca and octadecyltrimethylammonium montmorillonite[J]. Jounal of. Colloid Interface Science,2007,316(2):589-595
    [134]Milosevic S, Tomasevic-Canovic M, Dimittijevic R et al. Amorphization of aluminosilicate minerals during micronization process[J].American Creamic society Bulllletin,1992,71(5):771-775
    [135]Temuujin J, Okada K, Jadambaa T S et al. Effect of grinding on the leaching behavior of pyrophyllite[J]. Journal of European Creamic Society,2003, 23(8):1277-1282
    [136]Erdemoglu M, Sarikaya M. The effect of grinding on pyrophyllite flotation[J]. Minerals Engineering,2002,15(10):723-725
    [137]Samanta, Piyas Sarkar, C. K, Coupled charge trapping dynamics in thin SiO2 gate oxide under Fowler-Nordheim stress at low electron fluence, Journal of Applied Physics,1998,83(5):2662-2669
    [138]唐振方,高勇,黄景清,等.电子束辐照下纳米二氧化硅的类烧结现象[A].第四届全国超微颗粒学术研讨会.北京:中国颗粒学会,1998.46-48
    [139]Bailey S W. Crystal chemistry of the true mica. In Micas. Review Minerals, 1984,13:13-60
    [140]冯琳,宋延林,万梅香,等.磁性氧化铁纳米粒子的研究进展[J].科学通报,2001,46(16):1321-1324
    [141]Faust B C, Hoffmann M R, Bahnemann D W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of.alpha.-iron oxide (Fe2O3)[J]. Journal of Physical Chemistry,1989,93(17):6371-6381
    [142]Chen J, Xu L, Li W, et al. Fe2O3 nanotubes in gas sensor and lithium ion battery application[J]. Advanced Materials,2005,17(5):582-586
    [143]Zeng S Y, Tang K, Li T W, et al. Facile route for the fabrication of porous hematite nanoflowers:its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalysic properties[J]. Journal of Physical Chemistry. C,2008,112:4836-4843
    [144]Li Z, Wei L, Gao M Y, et al. One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles[J]. Advanced Materials,2005,17(8):1001-1005
    [145]Zhang Z J, Wei B Q, Ajayan P M. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition [J]. Applied Physics Letters, 2001,79(25):4207-4209
    [146]刘建华,于美,李松美.氧化铁纳米线阵列的溶胶-凝胶模板法制备与表征 [J].无机材料学报,2005,21(3):429-432
    [147]严新.固相法制备氧化铁纳米粒子[J].盐城工学院学报(自然科学版),2002,15(2):24-26
    [148]周秋玲,李春忠,顾锋,等.水热合成氧化铁纳米结构及机理研究[J].功能材料,2008,39(9):1522-1524
    [149]Hobbs Linn W.Electron-beam sensitivity in inorganic specimens[J]. Ultramicroscopy,1987,23(3-4):339-344
    [150]Csencsits R, Gronsky R. Damage of zeolite Y in the TEM and its effects on TEM images[J]. Ultramicroscopy,1987,23(3-4):421-432
    [151]Zobelli A, Gloter A, Ewels C P, et al. Shaping single walled nanotubes with an electron beam[J]. Physical Review B,2008,77(4):1-8
    [152]Kis A, Csanyi G, Salvetat J P, et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging[J]. Nature. Materials,2004,3:153-157
    [153]李志成,刘路,贺连龙,等.电子束诱导非晶GAAS晶化得形核与长大[J],金属学报,2003,39(1):13-16
    [154]严俊,张俭,胡仙超,姚程,方伟,盛嘉伟.叶腊石微结构及其晶体结构缺陷的高分辨透射电镜分析[J].矿物学报,2012,32(1):65-73
    [155]严俊,胡仙超,邵佳明,方伟,张俭,盛嘉伟.叶腊石干法研磨微结构及物相变化[J].硅酸盐通报,2011,30(5):993-997
    [156]Takahashi J, Kawano S, Shimada S, et al. Fabrication and Electrical Properties of Bi4Ti3O12 Ceramics by Spark Plasma Sintering[J].Japanses Journal of Applied Physics,1999,38(9B):5493-5496
    [157]Takeuchi T, Tabuchi M, Kondoh I, Tamari N, et al. Synthesis of dense lead titanate ceramics with submicrometer grains by spark plasma sintering[J] Journal of the American Ceramic Society,2000,83 (3):541-544
    [158]Wu Y J, Uekawa N, Kakegawa K. Sandwiched. BaNd2Ti4O12/Bi4Ti3O12/BaNd2Ti4O12 ceramics prepared by spark plasma sintering[J] Materials Letters,2003,57(24-25):4088-4092
    [159]Luo P, Nieh T G. Preparing hydroxyapatite powders with controlled morphology[J]. Biomaterials,1996,17(20):1959-1964
    [160]Mohammed Farid. A new approach to modelling of single droplet drying[J]. Chemical Engineering Science,2003,58():2985-2993
    [161]Stoyanova Lyubenova T, Matteucci F, Costa A, et al.Ceramic pigments with sphene structure obtained by both spray-and freeze-drying techniques[J]. Powder Technology,2009,193(1):1-5
    [162]Vicent M, Sanchez E, Moreno A, et al. Preparation of high solids content nano-titania suspensions to obtain spray-dried nanostructured powders for atmospheric plasma spraying. Journal of the European Ceramic Society,2012,32 (3):185-194
    [163]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361
    [164]Salvador P, Goazalez M L, Manoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at TiO2 rutile[J]. The Journal of Physical and Chemistry 1992,96(25):10349-10353
    [165]Bilmes S A, Mandelbaum P, Alvarez F, et al. Surface and electronic structure of titanium dioxide photocatalysts[J]. The Journal of Physical and Chemistry B,2000, 104(42):9851-9858
    [166]Dai Z M, Chen A P, Zhu Z N, et al. Photocatalytic reactor packed with novel TiO2 photocatalyst coated pyrex-glass-coil[J]. Huaxue Xuebao,2002,53(3):233-235
    [167]Parker J C, Siegel R W. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes[J]. Journal of Materials Research,1990,5(6): 1246-1252
    [168]Choi W Y, Termin A, Hoffmann M. The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics[J]. The Journal of Physical and Chemistry,1994,98(51): 13669-13679
    [169]Ruterana P, Buffat P A, Thampi K R, et al. The structure of ruthenium supported on titania:a catalyst for low-temperature methanation of canbon dioxide[J]. Ultramicoscopy,1990,34(1-2):66-72
    [170]柴修安,王新春,等.GR复合钛白颜料在塑料领域的应用探讨[J].塑料工业,2008,36(8):74-75
    [171]晏全香,袁继祖.溶胶-凝胶法制备高岭土基复合颜料[J].非金属矿,2008, 31(4):26-28
    [172]Ninness B J. Formation of a thin TiO2 layer on the surface of silica and kaolin pigments through atomic layer deposition[J]. Colloids and surface A: Physicochemical and Engineering Aspects.2003,214(3):195-204
    [173]张晓波,郑水林,等.金红石型钛白/白色矿粉复合无机颜料的性能研究[J].非金属矿,2008,31(6):33-34
    [174]李勇进,王公善.不同偶联剂对叶腊石表面的改性研究[J].塑料科技,1998,(4):1-4
    [175]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993.45-98
    [176]Wilson M J. Clay Mineralogy Spectroscopic and chemical determinative methods[M]. London:Chapman & Hall Publisher,1994.89-354
    [177]孔德玉,陆厚根.叶腊石机械力化学表面改性研究[J].建筑材料学报,1998,1(1):63-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700