用户名: 密码: 验证码:
影响水流量标准装置性能的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流量计量是计量科学技术的重要组成部分,流量的准确测量对提高产品的质量与产量,保障生产安全,改进操作工艺,改善生产条件及科学实验等方面具有重要意义。作为流量单位量值统一与传递的标准,流量标准装置的研究、建立和应用在国内外引起普遍重视。在流量标准装置中,水流量标准装置的使用最为广泛,很多流量计量的理论研究、原理实验以及流量仪表的检定都是在水流量标准装置上进行的。可见,水流量标准装置性能的好坏,对流量仪表计量的准确性及流量量值的统一性将产生直接影响,因此对影响水流量标准装置性能的关键问题展开研究十分必要。
     从水力学角度来说,水流量标准装置的性能主要受到稳压容器、阀门、弯管、及变径管道等局部阻力件处水流特性的影响。因此本文在对这些影响水流量标准装置性能的水力学问题进行论述的基础上,采用理论分析和数值模拟方法对稳压容器动态响应及结构特性、阀门关闭过程中产生的水击现象及弯管内流动特性等进行了研究,为水流量标准装置的设计和运行提供了一定理论依据,具体有:
     基于流体网络法建立了横隔板式稳压容器的数学模型,并用matlab进行动态仿真,计算了不同工况下稳压容器的插入损失和传递损失,并以此二者为指标对所设计的横隔板式容器的稳压效果进行了评价。结果表明:横隔板稳压容器对高频压力脉动的衰减效果较好;稳压容器内气体腔室体积的变化对稳压效果能够产生影响,可以通过改变其工作体积,使稳压容器达到较好的衰减效果;稳压容器的安装位置对稳压效果也会产生影响。
     采用CFD数值计算方法对竖隔板式稳压容器的结构特性进行了研究。为实现瞬态工况下稳压容器内脉动流场的准确模拟,建立了包含稳压容器、管路和水箱的整体流道模型,使用用户自定义程序UDF (User Defined Functions)编写了入口流量脉动信号,并采用VOF多相流模型对气液界面进行跟踪,计算得到了不同工况下稳压容器出口处的流量波动系数。进而以其作为评价标准,分析了脉动频率、初始水位高度和隔板结构等对流量稳定性的影响。结果表明,竖隔板式稳压容器对高频压力脉动有较好的衰减效果,当频率低于10Hz时,脉动衰减率急剧下降;初始水位高度存在最佳值,以气、水容积比值在0.5左右时稳压效果最好;隔板位置以位于容器前部1/3处为佳,隔板高度在不影响气相空间的前提上可取最高值。隔板上开孔位置以隔板中上部为宜。隔板圆孔区应保证一定的流通面积,在进水腔和出水腔液位差较小的前提下,尽量减小圆孔的直径,以增加对流量脉动的吸收和缓冲作用。
     采用滑移网格技术实现了球阀的动态关闭过程,并用UDF控制阀门转动速度,对简单直管道内由关阀引起的水击现象进行了数值模拟研究。计算得到了水为常密度、变密度(压强的函数)和气液两相混合密度(空化模型)三种情况下阀前压强随时间的变化关系曲线,并与实验曲线和特征线法计算结果曲线进行了比较。结果表明,变密度情况下的计算结果与实验值更为接近,说明在考虑水的可压缩性的情况下对阀门完全关闭情况下的水击现象进行模拟是可行的。在此基础上,模拟计算了不同关阀时间和关阀方式下的水击压强随时间的变化关系,结果表明,增大关阀时间能够减小水击压强,但大于某个时间点后效果将不再明显;在关阀时间一定的情况下,先快后慢的减速关阀方式能有效降低最大水击压强。
     另外,本文还对水流经过弯管时的流动情况进行了模拟计算,对二次流的产生原因及发展过程进行了分析,并比较了弯管内加装导流片前后管内流动特性的变化情况,分析了导流片对二次流的消减作用和影响范围。
Flow measurement is an important part of measurement science and technology. The accurate measurement of flow rate is of great significance to improve the yield and quality of the product, ensure productive safety, improve the operation process and production condition and so on. As the consistence and transfer standard of the measurement value of flow rate unit, the research and application of the.flow calibration facility is caused widespread attention at home and abroad, of which the water flow calibration facility is most widely used. Many theoretical research, principle experiment and flow instrument calibration of flow measurement are conducted in the water flow standard facility, so the performance of which has a direct influence on the flow measurement accuracy and consistence and transfer of flowrate measurement value. So it is very necessary to carry study on the key questions to the influence on the performance of a water flowrate calibration facility.
     From the perspective of hydraulic, the performance of the water flow ratef calibration acility is mainly influenced by the water flow characteristic at surge tank, valve, elbow pipe and varying-area channel, etc. So in this paper, on the basis of the discussion on hydraulics problems that affect the water flow calibration facility, the methods of theoretical analysis and numerical simulation are used to study the dynamic response and structural characteristics of the surge tank, the water hammer phenomenon occurring in the process of valve closing and the flow characteristics of the elbow pipe, and so on. And it provided a certain theoretical basis for the design and operation of the water flow calibration facility. The following researches have been done in this paper.
     Based on the fluid network method, this paper establishes a mathematical model of the horizontal-baffle type surge tank, and the insertion loss and transmission loss are calculated through the dynamic simulation by the Matlab software. The results show that surge tank has a good attenuation effect on the high-frequency pulsation; the volume of gas chamber in container can influence the stability of flow, the container can reach better attenuation effect by changing the gas volume and the installation position of the container can also influence the stability of flow.
     Structural characteristics of surge tank with vertical baffle are studied using CFD numerical calculation method. To realize the accurate transient simulation of pulsating flow field, a three-dimensional model, including a surge tank, the pipeline and the water tank is built. The inlet flow pulsation is defined by the UDF (User Defined Functions), and the VOF model of fluent is used to track the gas-liquid interface. By calculating the flow fluctuation coefficient of variation of different flow conditions, the influence of pulse frequency, initial water level height and baffle plate structure on the flow stability are analyzed. Results show that surge tank with vertical baffle has a good attenuation effect on the high-frequency pulsation, when the frequency is below lOHz, the pulsation attenuation ratio decreases rapidly; there is an optimal initial water level to suppress fluctuations, the best volume ratio of air to water is about0.5; the preferable position of the baffle is at the front1/3of the surge tank; the height of the baffle can take the highest value if not affecting the air space; the preferable positon of the holes is in the upper part of the baffle; the round hole's part of baffle should ensure certain circulation area, on the premise of little water level difference between the inlet and outlet water chambers, the bore diameter should be proper decreased to increase the damping effect.
     Sliding mesh is used to realize the dynamic closed process of ball valve and the rotational speed of which is controlled by the UDF, and the water hammer phenomenon in simple straight pipe caused by the closing of the valve is numerical simulated. The constant density, variable density (function of the pressure) and gas-liquid two-phase mixture density are used to calculate individually to get pressure curve during valve closing. The results are compared with the experimental curve and the method of characteristic line curve. Results show that the variable density of calculation results is more close to experimental value and prove the water hammer phenomenon is feasible to simulate in the case of considering the compressibility of water on the valve fully closed condition. The relationship between the water hammer pressure and time is obtained under condition of different time and different way to close the valve through simulation, the results show that increasing valve time can reduce the water hammer pressure, and the effect is unconspicuous after certain time; when the valve closing time is fixed, the deceleration way can effectively reduce the water hammer pressure.
     In addition, the flow in the90degree elbow pipe is simulated, and the reason for the generation of the secondary flow and its development process are analyzed. Then it compares the changes of flow characteristic before and after the installation of the deflector in the elbow pipe, and analyzes the weaken effect and influence region of the secondary flow.
引文
[1]中国计量编辑部.流量计量综述[J].中国计量,2006, (z1):5-9
    [2]蒋长根.能源计量中的流量计量[J].上海计量测试,2008,35(6):2-8
    [3]国务院.关于加快发展节能环保产业的意见[J].上海节能,2013, (9):1-4
    [4]段慧明.液体流量标准装置和标准表法流量标准装置[M].北京:中国计量出版社,2004
    [5]湛含辉,成浩,刘建文.二次流原理[M].长沙:中南大学出版社,2006
    [6]赵昕等.水力学[M].北京:中国电力出版社,2009
    [7]李萍英.有压管道中的水击危害及其防治措施[J].武汉理工大学学报,2003,25(10):57-59
    [8]李宝.水流量标准装置变频调速稳压系统研究[D].天津大学,2009
    [9]A. T. J. Hayward. Methods of calibrating flowmeters with liquids-comparative survy[J]. Mesurement and control,1977,10(3):106-116
    [10]洪东旭,王伟.水流量标准装置水源系统选型比较[J].计量技术,2010,(5):49-52
    [11]Walter Poschel, Rainer Engel.The concept of a new primary standard for liquid flow measurement at PTB braunschweig[C].The 9th International Conference on Flow Measurement,1998:1-6
    [12]Noriyuki Furuichi, Hiroshi Sato, Yoshiya Terao, et al. A new calibration facility for water flowrate at high Reynolds number[J]. Flow Measurement and Instrumentation,2009,20(1):38-47
    [13]张莉,蒋旭平.压力可调水流量标准装置的稳定性研究[J].计量与测试技术,2009,36(8)
    [14]陈彦萼,严镇邦.高稳定性的容器稳压方法[J].华东化工学院学报,1982, (02):211-215
    [15]曹润生.容器稳压法水流量标准装置通过鉴定[J].化工自动化及仪表,1983, (4):56
    [16]王金华.变频调速在液体流量标准装置中的应用[J].工业计量,2011,(S1):137-138
    [17]丁维光.变频控制技术在水流量标准装置高位水槽中的应用[J].中国计量,2006,(8):50-51
    [18]何兴仁,崔耀华,张辉生等.闭合循环管路标准表法水流量标准装置的应用研究[C].2006:18-21
    [19]杨晓英,蒋旭平,胡寿根.水流量标准装置中变频调速对装置稳定性的研究[J].上海理工大学学报,2003,(1):17-20
    [20]陈寿平,蒋旭平,王海民等.人工智能在水流量标准装置中的应用研究[J].计量技术,2005,(12):3-6
    [21]张恩惠,殷金英,邢书仁.噪声与振动控制[M].北京:冶金工业出版社,2012
    [22]赵新泽.液压传动基础[M].武汉:华中科技大学出版社,2012
    [23]YANG Xiaosen, SHEN Yanliang, CAI Jan, et al. A resistance regulated method for eliminating the pressure ripple of aircraft hydraulic pump circuit[J]. Journal of Air Force Engineering University,2006,7(3):13-15
    [24]杜润.液压系统脉动衰减器的特性分析[D].西南交通大学,2010
    [25]Walt Flippo. Accumulators deliver new payoffs[J]. Machine Design,2008,80(3):46-49
    [26]孔祥东,权凌霄.蓄能器的研究历史、现状和展望[J].机床与液压,2004,(10):
    [27]王建中,周国栋,党志勇等.液体流量标准装置稳压罐性能模拟[J].计量学报,2012,33(5A):183-187
    [28]苏彦勋,梁国伟,盛健.流量计量与测试[M].北京:中国计量出版社,2007
    [29]李峥.水流量标准装置不确定度和流量稳定性研究[D].天津大学,2009
    [30]罗玉中,翁德平,余建友等.水流量标准装置稳压罐试验分析[C].2006年全国流量测量学术交流会论文汇编,2006:49-56
    [31]李延民,张智慧,张永.基于FLUENT的某型压力脉动衰减器的流场分析及优化设计[J].机床与液压,2010,38(11):86-88
    [32]单长吉.压力脉动衰减器的数学模型仿真及CFD流体解析[D].西南交通大学,2004
    [33]章寅.液压系统压力脉动衰减器特性研究[D].浙江大学,201O
    [34]杜润,柯坚,于兰英.分支谐振型液压脉动衰减器动态特性分析[J].机械科学与技术,2013,(06)
    [35]Selamet A, Lee I. Helmholtz resonator with extended neck[J]. The Journal of the Acoustical Society of America,2003,113(4):1975-1985
    [36]Selamet A., Radavich PM. The effect of length on the acoustic attenuation performance of concentric expansion chambers:analytical, computational and experimental investigation[J]. Journal of Sound and Vibration,1997,201(4):407-426
    [37]Selamet A., Radavich PM., Ji ZL. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet:Ⅱ. Comparison with experimental and computational studies[J]. Journal of Sound and Vibration,1998,213(4):619-671
    [38]Selamet A., Dicky N. S., Novak J. M. Theoretical, computational and experimental investigation of helmholtz resonators with fixed volume:lumped versus distributed analysis[J]. Journal of Sound and Vibration,1995,187(2):358-367
    [39]Selamet A., Ji ZL. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet:Ⅰ. Analytical approach [J]. Journal of Sound and Vibration,1998, 213(4):601-617
    [40]Jian-feng AN, Jian ZHANG, Xiao-dong YU, et al. Influence of flow field on stability of throttled surge tanks with standpipe[J]. Journal of Hydrodynamics, Ser. B,2013,25(2):294-299
    [41]Davis RD, Stokes GM, Moore D. Theoretical and Experimental Investigation of Mufflers with Comments on Engine Exhaust Muffler Design[J]. NACATN,1954:1192
    [42]Yu Chen, Nils P. Halm, Eckhard A. Groll, et al. Mathematical modeling of scroll compressors-part Ⅰ:compression process modeling[J]. International Journal of Refrigeration, 2002,25(6):731-750
    [43]Z. L. Ji. Acoustic attenuation performance analysis of multi-chamber reactive silencers[J]. Journal of Sound and Vibration,2005,283(1-2):459-466
    [44]SK Tang. On helmholtz resonators with tapered necks[J]. Journal of Sound and Vibration, 2005,279(3-5):1085-1096
    [45]C. J. Wu, X. J. Wang, H. B. Tang. Transmission loss prediction on SIDO and DISO expansion-chamber mufflers with rectangular section by using the collocation approach[J]. International Journal of Mechanical Sciences,2007,49(7):872-877
    [46]Yudong Xie, Yanjun Liu, Yong Wang.Dynamic design of electro-hydraulic control valve based on physical simulation model[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics,2009:388-391
    [47]曹树平,罗小辉,胡军华等.吸收压力脉动的自适应蓄能器回路研究[J].中国机械工 程,2008,19(6):671-675
    [48]蔡亦钢.流体传输管道动力学[M].浙江大学出版社,1990
    [49]Hoffinann D. Dampfung von Flussigkeitsschwingungen in Hydraulikleitungen[J]. olhydraulic und Pneumatik,1980,24(1):32-35
    [50]钱又嘉.用波动法分析稳压容器衰减压力脉动问题[J].流体工程,1986,(9):34-39
    [51]Sang-Hyun Kim. Design of surge tank for water supply systems using the impulse response method with the GA algorithm[J]. Journal of Mechanical Science and Technology,2010, 24(2):629-636
    [52]Mamcic Stanislay, Bogdevicius Marijonas. Simulation of dynamic processes in hydraulic accumulators[J]. Transport,2010,25(2):215-221
    [53]谢坡岸,王强.蓄能器对管路流体脉动消减作用的研究[J].噪声与振动控制,2000,(4): 2-5
    [54]贺尚红,王雪芝,何志勇等.薄板振动式液压脉动衰减器滤波特性[J].机械工程学报,2013,49(4):148-153
    [55]John G. Russell.Pressure vessels such as pressure accumulators.GB 1379599,
    [56]章寅,于俊,黎申等.压力脉动衰减器的仿真及实验研究[J].液压与气动,2011,(06)
    [57]窦雨淋,张涛.舰船管路流体脉动衰减器的性能研究[J].中国舰船研究,2008,3(4):40-44
    [58]田树军,张宏.液压管路动态特性的Simulink仿真研究[J].系统仿真学报,2006,18(5):1136-1138,1146
    [59]M. C. P. Brunelli. Two-Dimensional Pipe Model for Laminar Flow[J]. Transactions of the ASME. I:Journal of Fluids Engineering,2005,127(3):431-437
    [60]Kong Xiaowu, Wei Jianhua, Qiu Minxiu. Improvement of fluid pipe lumped parameter model[J]. Chinese Journal of Mechanical Engineering,2004,17(1):114-116
    [61]Tentarelli S. C, Brown F. T. Dynamic behavior of complex fluid-filled tubing systems,Part 2: system analysis[J]. J. Dynamic Systems, Measurement, and Control, Trans. ASME,2001, 123(1):78-84
    [62]Brown F. T, Tentarelli S. C. Dynamic behavior of complex fluid-filled tubing systems,Part 1:Tubing Analysis[J]. J. Dynamic Systems, Measurement, and Control, Trans. ASME, 123(1):71-77
    [63]邢科礼,葛恩华,丁崇生等.新型串联囊式蓄能器的理论分析及其安装位置的研究[J].工程机械,1997,(8):24-26
    [64]杨钢,仇艳凯,李宝仁等.考虑进口特性的蓄能器吸收压力脉动动态特性研究[J].液压与气动,2012,(4):13-17
    [65]M. Ijas, T. Virvalo.Experimental verification of pulsation dampers and their simplified theory[C].Bath Workshop on Power Transmission and Motion Control (PTMC 2000),2000:227-240
    [66]冀宏,张玲珑,杨建新等.油压驱动海水往复泵的流量脉动及其控制[J].液压与气动,2010,(9):84-87
    [67]王琳,曹瑞涛,冯长印.蓄能器基本参数确定及其特性对液压系统的影响[J].陶瓷,2005,(05):40-41
    [68]曾祥荣.H型液压消声器在系统中安装位置的研究[J].机床与液压,1988,(5):18-24
    [69]曾祥荣,张建成.共振型液压消声器的研究[J].机械工程学报,1990,26(5):90-95
    [70]曾强,马贵阳,江东方等.液体管道水击计算方法综述[J].当代化工,2013,42(8) 1189-1193
    [71]K. Hariri Asli, A. K. Haghi, H. Hariri Asli, et al. Water Hammer Modelling and Simulation by GIS[J]. Modelling and Simulation in Engineering,2012,2012:15
    [72]侯咏梅.水击理论与计算研究[D].郑州大学,2003
    [73]黄李冰.水击计算方法和水击理论研究[D].郑州大学,2012
    [74]张祥林,黄树槐,王运赣等.管道流体瞬变的有限元研究[J].中国机械工程,1994,5(4):23-25
    [75]朱倩倩,范丽丽.一维水击方程的间断有限元方法[J].武汉工业学院学报,2013,32(3):61-63
    [76]M. H. Afshar, M. Rohani. Water hammer simulation by implicit method of characteristic[J]. International Journal of Pressure Vessels and Piping,2008,85(12):851-859
    [77]Arris S. Tijsseling, Martin F. Lambert, Angus R. Simpson, et al. Skalak's extended theory of water hammer[J]. Journal of Sound and Vibration,2008,310(3):718-728
    [78]Li Jun Xuan, Feng Mao.An analytical theory of long-pipe water hammer[C].IntemmionM Retreat 011 Vortex Aerodynamics Collection ofAbstracts,2009:44
    [79]李彦浩,程永光.用多松弛格子Boltzmann方法模拟三维水击波[J].武汉大学学报(工学版),2013,46(4):417-422
    [80]郑铭,陈池,袁寿其.水锤数值计算的全特性曲线法[J].农业机械学报,2000,31(5):41-44
    [81]刘晔,朱晓林,王有镗.球阀流场的数值模拟与分析[J].吉林建筑工程学院学报,2009,26(6):29-32
    [82]刘健,李福堂.大口径蝶阀三维流动的数值模拟及分析[J].流体机械,2008,36(9):30-32.29
    [83]S. F. Moujaes, R. Jagan.3D CFD Predictions and Experimental Comparisons of Pressure Drop in a Ball Valve at Different Partial Openings in Turbulent Flow[J]. Journal of Energy Engineering,2008,134(1):24-28
    [84]HE Zhi-guo, MAO Gen-hai. Numerical simulation of 3D turbulence simulation in a cut-off valve and flow characteristics in pipes[J]. Journal of Hydrodynamics,2003,15(4):86-91
    [85]崔铭超,唐科范,刘桦.基于CFD技术的阀门内流道优化[J].水动力学研究与进展A辑,2010,25(4):438-445
    [86]高小瑞.基于Fluent的液压滑阀内部流场的数值模拟[J].机械管理开发,2009,24(5):49-50,53
    [87]巴鹏,邹长星,张秀绗.基于CFD技术的截止阀启闭时流场动态模拟[J].润滑与密封,2010,35(7):80-85
    [88]华晔,廖伟丽.CFD技术在管道阀门水击计算中的应用[J].电网与清洁能源,2009,25(3):72-75
    [89]刘华坪,陈浮,马波.基于动网格与UDF技术的阀门流场数值模拟[J].汽轮机技术,2008,50(2):106-108
    [90]Chaudhry M. H. Applied Hydraulic Transients[M]. New York:Van Nostrand Reinhold Company,1979
    [91]万五一,练继建,李玉柱.阀门系统的过流特性及其对瞬变过程的影响[J].清华大学学报(自然科学版),2005,45(9):1198-1201
    [92]张国柱.超临界火电机组给水管道内部流动数值分析[D].华中科技大学,2007
    [93]刘刚,王树立,马贵阳.90°弯管中瞬变流特性的实验研究[J].力学与实践,1991,13 (6):24-27
    [94]Sudo K, Sunida M, Hibara H. Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend[J]. Experiments in Fluids,1998,25(1):42-49
    [95]A. M. K. P. Taylor, J. H. Whitelaw, M. Yianneskis. Curved ducts with strong secondary motion:velocity measurements of developing laminar and turbulent flow[J]. Journal of Fluids Engineering,1982,104(3):350-359
    [96]温良英,张正荣,白晨光等.管道流量与弯管压差的关系及流量系数的实验研究[J].管道技术与设备,2003,(1):1-2,11
    [97]尚虹,王尚锦,席光等.90°圆截面弯管内三维紊流场实验研究[J].航空动力学报,1994,9(3):263-266
    [98]温良英,张正荣,陈登福等.弯管内流体流动的模拟计算与实验研究[J].计量学报,2005,26(1):53-56
    [99]湛含辉,朱辉,陈津端等.90°弯管内二次流(迪恩涡)的数值模拟[J].锅炉技术,2010,41(4):1-5
    [100]丁珏,翁培奋.90°弯管内流动的理论模型及流动特性的数值研究[J].计算力学学报,2004,21(3):314-321,329
    [101]董亮,刘厚林,代翠等.不同湍流模型在90°弯管数值模拟中的应用[J].华中科技大学学报:自然科学版,2012,40(12):18-22
    [102]樊洪明,何钟怡,王小华.弯曲管段内流动的大涡模拟[J].水动力学研究与进展A辑,2001,16(1):78-83
    [103]Prasanta. K. Sinha, A. N. Mullick, B. Halder, et al. Computational investigation of performance characteristics in a C-shape diffusing duct[J]. International Journal of Advances in Engineering and Technology,2012,3(1):129-136
    [104]江山,张京伟,吴崇健等.基于FLUENT的90°圆形弯管内部流场分析[J].中国舰船研究,2008,(01)
    [105]K. Mohanarangam, Z. F. Tian, J. Y. Tu. Numerical simulation of turbulent gas-particle flow in a 90° bend:Eulerian-Eulerian approach[J]. Computers & Chemical Engineering,2008, 32(3):561-571
    [106]马金英.弯管中流道流场的数值分析[J].煤矿机械,2007,28(12):80-82
    [107]许同乐.直角弯管流道流场的数值模拟与分析[J].起重运输机械,2005,(6):37-39
    [108]孙奉仲,王凯,王伟.90°交叉弯管混合流场的数值模拟与分析[J].节能,2005,(9):13-15
    [109]Kuan B. T, Schwarz M. P.CFD simulation of single phase and dilute particulate turbulent flows in 90 duct bends[C].Proceedings of the ASME 2003 Fluids Engineering Division Summer Meeting,2003:1901-1908
    [110]梁德旺,王国庆,吕兵.低速高湍流度90°弯管流动数值模拟[J].南京航空航天大学学报,2000,32(4):381-387
    [111]贾兴豪.弯管导流结构的优化和数值模拟研究[D].重庆大学,2011
    [112]张新育,沈珞婵,樊建人等.方截面弯管加导流板时湍流二次流数值模拟[J].浙江大学学报(自然科学版),1996,30(4):440-446
    [113]ShivKumar Jaiswal, Sanjay Yadav, A. K. Bandyopadhyay, et al. Global water flow measurement and calibration facilities:review of methods and instrumentations[J].2012, 27(2):63-76
    [114]何秀华.水泵压力脉动的类型研究[J].排灌机械,1996, (4):47-49
    [115]王建中,罗玉中,戴仁飞.称量法水流量标准装置设计中的稳定性问题[C].2006:42-48
    [116]中华人民共和国国家技术监督局.JJG164-2000,中华人民共和国国家标准-液体流量标准装置检定规程.北京:中国标准出版社,2000
    [117]中华人民共和国国家质量监督检验检疫总局.JJG 162-2009,冷水水表检定规程.北京:2009
    [118]中华人民共和国国家质量监督检验检疫总局.JJG165-2005,钟罩式气体流量标准装置检定规程.北京:中国计量出版社,2005
    [119]湛含辉,朱辉,李灿等.弯管压降随迪恩涡的变化规律及数值模拟[J].机械设计与制造,2010,(4):193-195
    [120]杜广生.工程流体力学[M].北京:中国电力出版社,2007
    [121]华绍曾,杨学宁.实用流体阻力手册[M].国防工业出版社,1985
    [122]罗至昌.流体网络理论[M].北京:机械工业出版社,1988
    [123]刘剑,贾进章,郑丹.流体网络理论[M]北京:煤炭工业出版社,2002
    [124]邢科礼,刘山,葛思华等.压力脉动衰减器衰减效果的评价方法[J].机械研究与应用,1998,11(4):6-9
    [125]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004
    [126]刘永辉.圆管过渡区流速特性的研究[D].山东大学,2011
    [127]刘正刚.基于流固耦合的小型旋翼式机械内部水流特性的研究[D].山东大学,2008
    [128]David C. Wilcox. Turbulence modeling for CFD[M]. USA:DCW Industries,2006
    [129]Samy M. El-Behery, Mofreh H. Hamed. A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser[J]. Computers & Fluids,2011, 44(1):248-257
    [130]袁明豪,杨燕华,李天舒等.基于VOF方法的带相变的自由界面的计算[J].工程热物理学报,2007,(06):961-964
    [131]Michio Murase, Yoichi Utanohara, Ikuo Kinoshita, et al. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg[J]. Journal of Computational Multiphase Flows,2012, 4(4):375-386
    [132]D. M. Henderson, J. W. Miles. Surface-wave damping in a circular cylinder with a fixed contact line[J]. Journal of Fluid Mechanics,1994,275:285-299
    [133]Helmut F. Bauer, Werner Eidel. Oscillations of a viscous liquid in a cylindrical container[J]. Aerospace Science and Technology,1997, 1(8):519-532
    [134]Craft T. J, Gant S. E., Iacovieds H., et al.Development and application of a new wall function for complex turbulent flows[C].European Congress on Computational Methods in Applied Sciences and Engineering,2001:
    [135]Nichols R. H., Nelson C. C. Wall function boundary condition including heat transfer and compressibility[J]. AIAA Journal,2004,42(6):1107-1114
    [136]倪昊煜.水击理论研究[D].郑州大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700