用户名: 密码: 验证码:
基于几何模型优化的反舰导弹航路规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美国空军和海军应其在西太平洋战区的战略需求,联合开发了一种新作战概念和未来高端战争模式——“空海一体战”理论。“空海一体战”理论明确指出保护美军海军高价值水面目标安全的能力是确保美军在海上领域机动自由及其兵力投送的关键。而作为远程精确制导武器的反舰导弹,目前已成为打击各类水面目标的主要作战武器,很自然地成为了美军实施“空海一体战”面临的主要威胁之一。导弹战已成为现代海战的主要战法,现代海战已逐步由平台机动战转向火力机动战发展,作为重要需求之一的反舰导弹航路规划技术应运而生。航路规划已成为提高反舰导弹作战效能,实施远程精确打击的有效手段。
     反舰导弹航路规划是在防空技术日益先进、防空体系日益完善的背景下,由现代信息化条件下的海上火力机动战理论所催生的新的技术产物,它是航路规划领域中的一类新问题。如何运用航路规划技术以充分发挥反舰导弹武器的作战效能,已成为目前亟待解决的难、新问题,而其核心在于研究反舰导弹航路规划方法。本文的研究旨在解决上述问题。
     本文首先建立了反舰导弹航路规划的数学模型,根据反舰导弹的航路特征建立了其航路规划的空间模型,并给出了航路规划的形式化定义;然后重点研究了基于几何学原理的航路规划方法、基于几何知识引导型智能优化算法的航路规划方法以及基于几何模型的多平台反舰导弹协同航路规划方法等关键技术;最后设计与实现了反舰导弹航路规划仿真原型系统(Anti-ship Missile Path PlanningSimulation System, ASMPPSS),并从应用的需求验证了本文所提出的理论的正确性和方法的可行性。论文的主要贡献体现在以下几个方面:
     一、建立了反舰导弹航路规划的问题模型。建立了反舰导弹的航路模型,基于此给出了反舰导弹航路规划的相关概念及其定义;分析阐述了反舰导弹的航路性能约束条件,构建了反舰导弹航路规划的目标函数和数学优化模型;从几何学的角度建立了反舰导弹航路规划的规划空间模型,提出了功能区域的概念,并运用功能区域的概念和集合论的观点对航路规划进行了形式化定义。
     二、研究了基于几何学原理的航路规划方法。将功能区域的概念融入逆向航路规划过程中,发现了功能区域的几何学渐变规律,据此提出了功能区域簇的概念;将功能区域簇及其他航路性能约束与逆向航路规划过程相结合,提出了一种航路规划图形化快速逆推方法;进一步地,将上述方法融入可视图方法中提出了一种基于几何可视图的自动航路规划方法——OACRPER-MAFO算法。
     三、提出了一类基于知识引导型智能优化算法的航路规划方法。在智能优化算法中引入知识引导进化的策略,采用航路规划特定领域知识对算法进行引导,提出了一种知识引导型智能优化算法的航路规划求解框架,针对不同的引导对象选择对应的引导方式,并给出了求解框架的运行机制;分别以粒子群优化(ParticleSwarm Optimization, PSO)算法和遗传算法(Genetic Algorithm, GA)为例对求解框架进行应用和验证,将功能区域簇的概念引入标准PSO算法和GA中,采用相应的编码方式和进化过程将通用求解框架中的分步更新元策略映射为与各自算法相匹配的进化策略,分别提出了一种功能区域簇实时约束(Oprational Area ClusterReai-time Restriction, OACRR)的PSO算法——OACRR-PSO算法和一种约束引导(Constraints Driven, CD)的GA算法——CD-GA算法。
     四、提出了基于几何模型的多平台反舰导弹协同航路规划方法。给出了协同航路规划的总体思路,提出了三位一体的协同航路规划战术决策的思想;为了解决航路交叉问题,提出了区域划分的思想,建立了协同航路规划的区域划分模型;为了适应海上火力机动战的发展要求,提出了一种航路规划条件下的火力分配方法,建立了协同航路规划的火力分配模型;分析了协同航路规划的主要特点,给出了协同航路规划的决策过程。
     论文最后设计实现了反舰导弹航路规划仿真原型系统ASMPPSS,验证了本文提出的基于几何模型优化的反舰导弹航路规划方法及其相关技术的有效性。本文的研究对提高反舰导弹的突防能力以及航路规划的决策效率具有十分重要的理论意义和实践价值。
According to the stratege requirements of the west pacific military area, UnitedStates air force and navy jointly developed a new combat concept and future high-techwar mode-“Air-Sea battle”. The theory of “Air-Sea battle”points out that the capabilityof protecting the high-value surface ships is the key to guarantee the marine maneuverfreedom and the force projection ability. The anti-ship missile, a kind of long-distanceaccurate guidance weapon, now has become the major combat weapon for attackingdifferent kinds of surface targets. Therefore, it naturally becomes one of main threats forUS army executing the “Air-Sea battle” combat mode. Missile warfare has become amajor warfare of modern marine war. Modern marine war has transformed from theplatform maneuver warfare to the fire maneuver warfare. As a important requirement,the technique of anti-ship missile path planning is emerging, which has become a keymeasure to improve the combat efficiency of the anti-ship missile and execute thelong-distance accurate attack.
     On the background that the air defense technology is more advanced and the airdefense system is more perfect, anti-ship missile path planning becomes a newtechnological product derived from the maneuver warfare theory of the maritimefirepower under modern information conditions. How to use the path planningtechnology to improve the combat efficiency of anti-ship missile weapons now is anurgent problem to be solved. The center is to investigate the methods of anti-shipmissile path planning. This thesis aims to solve the problem above.
     We firstly construct the mathematical model of the anti-ship missile path planning,build the space model for the path planning in terms of the path features of anti-shipmissile, and provide the formal definition of anti-ship path planning. We mainly studiedthe geometric principle based path planning method, intelligent optimization algorithmsbased path planning method and multi-platform anti-ship missile cooperative pathplanning method. At last we designed and implemented a simulation prototype systemnamed ASMPPSS(Anti-ship Missile Path Planning Simulation System), and wedemonstrated the correctness and feasibility of the proposed methods from theperspective of application requirement. The major contributions are as follows:
     (1)The problem model of anti-ship missile path planning is constructed. The pathmodel of anti-ship missile is constructed, based which the related concept and definitionof anti-ship missile path planning are given. Path performance constraints of anti-shipmissile are analyzed, and the object function and mathematic optimization model ofanti-ship missile path planning are constructed. Planning space model of anti-shipmissile path planning is constructed from the perspective of geometry, the concept ofoperational area is proposed, with which and set theory the path planning is defined formally.
     (2)Geometric principle based path planning method is studied. The concept ofoperational area is integrated into the process of converse path planning, and thegeometric gradual transformation rule of operational area is discovered, with which theconcept of operational area cluster is presented. Combing the operational area cluster,other path performance constraints and the process of converse path planning, a fastgraphic converse reasoning method of path planning is proposed. Furthermore,aforementioned methods are integrated into visibility graph method and, consequently, ageometric visibility based automatic path planning method is proposed.
     (3)A kind of method based on geometric knowledge-conducting intelligentoptimization algorithms for path planning is proposed. The strategy which adoptsknowledge to conduct evolution is introduced into intelligent optimization algorithmsand specific domain knowledge from path planning is employed to conduct thealgorithm. A framework of knowledge-conducting intelligent optimization algorithmsfor solving path planning is proposed. Different conducting manner is selectedaccording to different conducting object, and the operation mechanism of the solvingframework is provided. Particle Swarm Optimization (PSO) and Genetic Algorithm(GA) are taken as examples to apply and verify the framework. The operational areacluster is introduced into PSO and GA, corresponding coding pattern and evolutionprocess are used to map the meta step-by-step update strategy in general solvingframework to the evolution strategy of respective algorithms. An Operational AreaCluster Real-time Restriction (OACRR) based PSO algorithm (OACRR-PSO) andConstraints Driven (CD) based GA algorithm (CD-GA) are put forward.
     (4)The multi-platform anti-ship missile cooperative path planning method basedon geomrtric model is proposed. The overall strategy for cooperative path planning isgiven, and the idea of trinity tactical decision of cooperative path planning is proposed.To solve the path intersection problem, a area division idea is proposed, and the modelof area division is constructed. To meet the developing demand of the maneuver warfaretheory of the maritime firepower, a firepower assignment method under the condition ofpath planning is presented and the firepower assignment model of cooperative pathplanning is formulated. Main characteristics of cooperative path planning are analyzedand the decision process of cooperative path planning is provided.
     At last, an anti-ship missile path planning simulation prototype system (ASMPPSS)is designed and implemented, and the geometric model optimization based anti-shipmissile path planning method and related techniques are validated. The research of thispaper has great theory and practical meaning to improve the penetration ability ofanti-ship missiles and the decision efficiency of path planning.
引文
[1]刘钢,老松杨,谭东风,周智超.反舰导弹航路规划图形化快速逆推方法[J].弹道学报,2011,23(2):52-56.
    [2]刘钢,老松杨,谭东风.基于功能区域的反舰导弹逆向航路规划[J].系统工程与电子技术,2011,33(4):799-805.
    [3]刘钢,老松杨,袁灿,侯绿林,谭东风.反舰导弹航路规划的OACRR-PSO算法[J].自动化学报,2012,38(9):1528-1537.
    [4]王涛,孙建华,李晓阳.试论舰舰导弹的弹道规划问题[J].战术导弹技术,2003,24(5):11-15.
    [5]蒋盘林,蒋春山.美军空海一体战作战行动概念及其对未来电子战的技术挑战[J].通信对抗,2011,32(2):3-8.
    [6]胡杰民,郭梅初,杨斌“.空海一体战”理论透析[J].国防科技,2011,34(2):50-53.
    [7]刘鹏.试析美军“空海一体战”的特点与问题[J].现代国际关系,2010,30(9):21-26.
    [8] U.S Department of Defense,“Quadrennial Defense Review Report2010”, p.32,http://www. defense. gov/qdr/QDR%20as%20o%f2029JAN10%201600. pdf.
    [9] Tol J V, Gunzinger M, Krepinevich A, et al. AirSea Battle: A Point-of-DepartureOperational Concept [R].Washington D C: Center for Strategic and BudgetaryAssessments (CSBA),2010.
    [10] Andrew F.Krepinevich,Why AirSea Battle?[R]. Washington D C: Center forStrategic and Budgetary Assessments (CSBA),2010.
    [11] Donna Miles,“Defense Leaders Laud Air-Sea Battle Concept Initiative”, June7,2010, http://www.defense.gov/news/news article.aspx?id=59527.
    [12] The Final Report of the Quadrennial Defense Review Independent Panel,“TheQDR in Perspective: Meeting America’s National Security Needs in the21stCentury”, Washington, DC: United States Institute of Peace,2010, p.51,http://www.usip.org/files/qdr/qdrreport. pdf.
    [13]叶建军.美国应对“反进入和区域拒止”战略评析[J].现代国际关系,2011,31(6):42-46.
    [14] Andrew Krepinevich, Barry Watts&Robert Work,“Meeting the Anti-Access andArea-Denial Challenge”, Washington D C: Center for Strategic and BudgetaryAssessments,2003, p.5, http://www.csbaonline.org/4Publications/PubLibrary/R.20030520. Meeting_the_Anti-A/R.20030520. Meeting_the_Anti-A. pdf.
    [15] U. S. Joint Chiefs of Staff, The National Military Strategy of the United States ofAmerica,2011, p.8..
    [16]孙菲.解读美军“空海一体战”概念[J].兵器知识,2011,33(4):46-49.
    [17] Andrew F.Krepinevich,Development of China’s Military Force and Air-seaCombat of U.S.?[R].Washington D C: Center for Strategic and BudgetaryAssessments (CSBA),2010.
    [18]王学宝,王士星,顾文锦.反舰导弹变轨方式研究[J].飞航导弹,2004,34(2):57-59.
    [19]颜仲新,刘鼎臣,胡海.反舰导弹飞行弹道探讨[J].飞航导弹,2002,32(2):33-36.
    [20]韦取名.美军针对中国开发的新作战概念[J].晚报文萃,2011,22(7):29-30.
    [21]阚亚斌.反舰导弹攻击战术的超视距跨越[J].装备指挥技术学院学报,2003,14(6):43-48.
    [22]李中良,徐清华,刘钢.超声速反舰导弹发展对现代海战的影响[J].飞航导弹,2011,41(4):68-71.
    [23]龙飞,刘鼎臣,张林等.航路规划技术对反舰导弹攻击影响的探讨[J].飞航导弹,2005,35(12):26-28.
    [24]闵昌万,袁建平.军用飞行器航迹规划综述[J].飞行力学,1998,16(4):14-19.
    [25]陈玉文.目标散布区分析及远程反舰导弹搜索参数估算[J].射击学报,1999,(3):71-74.
    [26]陈玉文.海面机动目标散布规律及反舰导弹搜索区划分[J].飞航导弹,1999,29(7):6-10.
    [27]陈玉文,等.远程反舰导弹搜索区及其对目标的覆盖概率[J].火力与指挥控制,2001,26(S1):13-15.
    [28]陈玉文.远程反舰导弹弹道规划研究[J].火力与指挥控制,2004,29(6):32-35.
    [29] James L. Harrison. A Computer Simulation of An Aircraft Penetration overHostile Terrain[D]. Monterey, California: Naval Postgraduate School,1965.
    [30]谢晓方,孙涛.面向对象的反舰导弹航路规划[J].火力与指挥控制,2006,31(7):73-75.
    [31]周烨.反舰导弹航迹规划的层次与任务[J].飞航导弹,2003,33(6):1-4.
    [32] Madani Irfan, Allerton David J.. An Optimized Routing Method for TerrainReferenced Navigation [C]//In: Proceedings of the AIAA Guidance, Navigation,and Control Conference2006,2006,7:4331-4343.
    [33] Taoridi A. Ademoye, Asad Davari. Trajectory Planning for Multiple AutonomousSystems Using Mixed Integer Linear Programming [C]//In: Proceedings of the38th Southeastern Symposium on System Theory Tennessee Technological University,2006:175-179.
    [34]陈玉文.反舰导弹航路规划快速搜索算法[J].系统仿真学报,2009,21(20):6424-6428,6435.
    [35]沈建锋,刘兴明,吴凌华,许诚.多平台反舰导弹协同航迹规划[J].战术导弹技术,2009,(2):62-66.
    [36] Ioannis K. Nikolos, Athina N. Brintaki. Coordinated UAV Path Planning UsingDifferential Evolution [C]//In: Proceedings of the13th MediterraneanConference on Control and Automation,2005:549-556.
    [37] Chandler P. R., Rasmussen S., Pachter M.. UAV Cooperative Path Planning [R].AIAA-2000-4370.
    [38]刘娟.复杂对抗条件下的高空高超声速巡航导弹航迹规划方法研究[D].长沙:国防科学技术大学,2010.
    [39]刘罡,刘玉斌,赵杰,朱磊.基于可视切线图的新型煤矿救援机器人路径规划[J].吉林大学学报(工学版),2011,41(4):1107-1112.
    [40]吴峰光,奚宏生.一种新的基于切线的路径规划方法[J].机器人,2004,26(3):193-197.
    [41]刘晓,刘忠,薛锋.基于几何算法的水下航行器路径规划[J].海军工程大学学报,2009,21(6):41-44.
    [42]刘亚杰,王航宇,谢君.狭窄环境中基于几何法的全局路径规划新方法[J].海军工程大学学报,2010,22(4):82-86.
    [43]傅阳光,周成平,王长青等.考虑时间约束的无人飞行器航迹规划[J].宇航学报,2011,32(4):749-755.
    [44]孙阳光,丁明跃,周成平等.基于量子遗传算法的无人飞行器航迹规划[J].宇航学报,2010,31(3):648-655.
    [45]张友安,范作娥,糜玉林.反舰导弹航路规划与威胁规避算法[J].吉林大学学报(工学版),2008,38(3):746-752.
    [46]吴文超,黄长强,宋磊等.不确定环境下的多无人机协同搜索航路规划[J].兵工学报,2011,32(11):1337-1342.
    [47]中国社会科学院语言研究所词典编辑室编.现代汉语词典[M].北京:商务印书馆,1984.
    [48]中国人民解放军军事科学院.中国人民解放军军语[M].北京:军事科学出版社,1997.
    [49]关世义,宋玮,宋绍梅.关于飞行任务规划若干名词术语的讨论[J].飞航导弹,2005,35(8):23-25.
    [50]王建国,高军亮,徐晓刚.反舰导弹航路规划概述[J].飞航导弹,2007,37(2):26-29.
    [51]张传刚,阚亚斌,杨兴宝等.反舰导弹航路规划原则与使用决策研究[J].海军大连舰艇学院学报,2006,29(1):30-34.
    [52]王建国,徐晓刚,高军亮等.航路规划技术在反舰导弹远程打击中的应用[J].飞航导弹,2006,36(9):23-25.
    [53]何珮.低空突防航迹规划方法研究[D].北京:北京航空航天大学,2003.
    [54] Kabama P T, Meerkov S M, Zeitz F H. Optimal path planning for unmannedcombat aerial vehicles to defeat radar tracking[J]. Journal of Guidance, Control,and Dynamics,2006,29(2):279-288.
    [55]丁明跃,郑昌文,周成平,等.无人飞行器航迹规划[M].北京:电子工业出版社,2009.
    [56] Hucaoglu C, Sanderson A C. Planning multiple paths with evolutionaryspeciation[J]. IEEE Transactions on Evolutionary Computation,2001,5(3):169-191.
    [57]范洪达,马向玲,叶文.飞机低空突防航路规划技术[M].北京:国防工业出版社,2007.
    [58] Hsiao Y T, Chuang C L, Chien C C. Ant colony optimization for best pathplanning[C]//In: Proceedings of the IEEE International Symposium onCommunications and Information Technologies. Sapporo, Japan: IEEE,2004:109-113.
    [59]谢晓方,孙涛,欧阳中辉.反舰导弹航路规划技术[M].北京:国防工业出版社,2010.
    [60] Nikolos I K, Valavanis K P, Tsourveloudis N C, et al. Evolutionary algorithmbased offline/online path planner for UAV navigation[J]. IEEE Transactions onSystem, Man, and Cybernetics-Part B: Cybernetics,2003,33(6):898-912.
    [61]郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446.
    [62] AI Hasan S, Vachtsevanos G. Intelligent route planning for fast autonomousvehicles operating in a large natural terrain[J]. Robotics and AutonomousSystems,2002,40(1):1-24.
    [63]叶文,朱爱红,范洪达.低空突防航路规划算法综述[J].宇航学报,2007,28(6):1441-1446.
    [64] Jung Leng Foo, Jared Knutzon, Vijay Kalivarapu, James Oliver, and Eliot Winer.Path Planning of Unmanned Aerial Vehicles using B-Splines and Particle SwarmOptimization[J]. Journal of Aerospace Computing, Information, andCommunication,2009,6(4):271-290. DOI:10.2514/1.36917.
    [65]杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学,2005,23(2):10-14.
    [66] Nathan D R, Manu S, David G. A hybrid A*automation approach to on-line pathplanning with obstacle avoidance[C]//In: Proceedings of AIAA1st IntelligentSystems Technical Conference. Chicago, Illinois: AIAA,2004.1-17.
    [67]刘娟,张伟,李群,王维平.基于威胁特征点的启发式航迹规划方法[J].系统工程与电子技术,2010,32(10):2171-2175.
    [68] Shannon T, Ahthony C, Eric J. On-line trajectory optimization including movingthreats and targets [C]//In: Proceedings of AIAA Guidance, Navigation, andControl Conference and Exhibit. Rhode island, Providence: American Institute ofAeronautics and Astronautics,2004.1-12.
    [69] Fu Yang Guang, Ding Ming Yue, and Zhou Cheng Ping. Phase angle-encoded andquantum-behaved particle swarm optimization applied to three-dimensional routeplanning for UAV [J]. IEEE Transactions on Systems, Man, andCybernetics—Part A: Systems and Humans,2011,42(2):1-16. Digital ObjectIdentifier10.1109/TSMCA.2011.2159586.
    [70] Guo Xiaojun, Fan Zuoe, and Ma Peibei. Research and simulation on routeplanning algorithm for anti-ship missile[C]//In: Proceedings of2008AsiaSimulation Conference-7th International Conference on Systems Simulation andScientific Computing. Beijing: IEEE,2008.940-946.
    [71]孙涛,谢晓方,乔勇军.基于二维自由空间蚁群算法的反舰导弹航路规划仿真[J].系统仿真学报,2008,20(13):3586-3588,3592.
    [72] Helgason R V, Kennington J L And Lewis K R. Cruise missile mission planning:a heuristic algorithm for automatic path generation [J].Journal of Heuristics,2001,7(5):473-494.
    [73]孙健,吴森堂.基于改进粒子群优化算法的巡航导弹航路规划[J].北京航空航天大学学报,2011,37(10):1-5.
    [74]任敏,霍霄华.基于异步双精度滚动窗口的无人机实时航迹规划方法[J].中国科学:信息科学,2010,40(4):561-568.
    [75] Kevin P B. High-fidelity real-time trajectory optimization for reusable launchvehicles[D]. California: Naval Postgraduate School,2006:28-40.
    [76] Frazzoli E. Robust hybrid control for autonomous vehicle motion planning[D].Massachusetts: Massachusetts Institute of Technology,2001.
    [77] Amir T K. Trajectory design for cooperative combat missions[R]. IEEE978-1-4244-1488-1,2007:1-6.
    [78] Amin J N, Jovan D B, Raman K M. A fast and efficient approach to path planningfor unmanned vehicles [R].AIAA2006-6103,2006.
    [79]朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593.
    [80] Ortega Lidia M., Rueda Antonio J., Feito Francisco R. A solution to the PathPlanning problem using angle preprocessing[J].Robotics and AutonomousSystems,2009,58(1):27-36.
    [81] Wang H B, Zhang L L. Path planning based on ceiling light landmarks for amobile robot [R]. IEL,2007:159321598.
    [82] Pettersson P O, Doherty P. Probabilistic roadmap based path planning for anautonomous unmanned helicopter[J]. Journal of Intelligent and Fuzzy Systems,2006,17(4):395-405.
    [83]朱毅,张涛,宋靖雁.未知环境下势场法路径规划的局部极小问题研究[J].自动化学报,2010,36(8):1122-1130.
    [84] Huang L. Velocity planning for a mobile robot to track a moving target-apotential field approach[J].Robotics and Autonomous Systems,2009,57(1):55-63.
    [85] Giesbrencht J. Global path planning for unmanned ground vehicles[R]. TechnicalMemorandum Defence RD Canada-Suffield2004-272, DRDC Suffield, Canada,2004.
    [86]王维平,刘娟.无人飞行器航迹规划方法综述[J].飞行力学,2010,28(2):6-10.
    [87] S.Twigg Shannon. Optimal path planning for single and multiple aircraft using areduced order formulation[D]. Georgia Institute of Technology,2007.
    [88] Geiger Brian R., Horn Joseph F., Delullo Anthony M., et al. Optimal pathplanning of UAVs using direct collocation with nonlinear programming [C]//In:Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Keystone, USA: AIAA,2006:6106-6199.
    [89] Khoukhi Amar, Baron Luc, Balazinski Marek. Constrained multi-objectivetrajectory planning of parallel kinematic machines[J]. Robotics andComputer-Integrated Manufacturing,2009,25(4-5):756-769.
    [90] R.Saravanan, S.Ramabalan, C.Balamurugan. Evolutionary multi-criteriatrajectory modeling of industrial robots in the presence of obstacles[J].Engineering Applications of Artificial Intelligence,2009,22(2):329-342.
    [91] Frederick H.. UCAV Path Planning in the Presence of Radar-GuidedSurface-to-Air Missile Threats[D]. Michigan: The University of Michigan,2005.
    [92] Ma Cedric S., Miller Robert H. MILP optimal path planning for real-timeapplications [C]//In: Proceedings of the2006American Control Conference.Minneapolis, Minnesota, USA: IEEE Press,2006:4945-4950.
    [93]沈建锋,许诚,陈峰.遗传算法在反舰导弹航路规划中的应用[J].飞行力学,2005,23(3):52-55,66.
    [94] Ademoye Taoridi A, Davari Asad. Trajectory planning of multiple autonomoussystems using mixed-integer linear programming [C]//In: Proceedings of the38th Southeastern Symposium on System Theory. Cookeville, Tennessee, USA:IEEE Press,2006:260-264.
    [95]刘钢,老松杨,侯绿林,谭东风.约束引导的反舰导弹航路规划遗传算法[J].弹道学报,2012,24(4):11-17.
    [96] K.Misovec, T.Inanc, J.Wholetz, et al. Low-observable nonlinear trajectorygeneration for unmanned air vehicles[C]//In: Proceedings of the42nd IEEEConference on Decision and Control. Maui, USA: IEEE,2003:1-24.
    [97]赵明元,周军.基于A*算法的四维实时航迹规划算法[J].火力与指挥控制,2008,33(8):99-101.
    [98]唐上钦,黄长强,胡杰,吴文超.基于威胁等效和改进PSO算法的UCAV实时航路规划方法[J].系统工程与电子技术,2010,32(8):1706-1710.
    [99] Hebert Jeffrey M. Air Vehicle Path Planning[D]. AFIT/DS/ENG/01-04,2001.
    [100] Jeffrey.A Path Planning Problem and Solution. Proc. of IEEE,1994NAECON,105-108.
    [101]李清.综合低空飞行与突防系统研究[D].南京:南京航空航天大学硕士学位论文,1997.
    [102] Doyle A B, Jones D I. A tangent based method for robot path planning[C]//In:Proceedings of the1994IEEE International Conference on Robotics andAutomation. San Diego: IEEE Computer Society Press,1994:1561-1566.
    [103]刘钢,周智超.基于舰艇编队的反舰导弹航路规划区域划分[J].指挥控制与仿真,2008,30(3):22-27.
    [104] Lechevin N, Rabbath C A,Lauzon M. Cooperative and deceptive planning ofmulti-formations of networked UCAVs in adversarial urban environments[C]//In:Proceedings of the2007AIAA Guidance, Navigation and Control Conferenceand Exhibit. Hilton: AIAA,2007:6410-6414.
    [105] Vascak J, Rutrich M. Path planning in dynamic environment using fuzzycognitive maps[C]//In: Proceedings of the6th International Symposium onApplied Machine Intelligence and Informatics. Herlany:IEEE,2008.5-9.
    [106] Melchior P, Orsoni B, Lavialle O, et al. Consideration of obstacle danger level inpath planning using A*and fast-marching optimization: comparative study[J].Signal Processing,2003,83(11):2387-2396.
    [107] Szczerba R, Galkowski P, Glicktein I, et al. Robust algorithm for real-time routeplanning[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):869-878.
    [108] Stentz A. Optimal and efficient path planning for partially-knownenvironments[C]//In: Proceedings of IEEE International Conference on Roboticsand Automation, San Diego, USA, May8-13,1994.
    [109] Tal S, Corey S. Assignment of cooperating UAVs to simultaneous tasks usinggenetic algorithms[R]. Technical Report AIAA2005-5829, Ft. Belvoir DefenseTechnical Information Center,2005.
    [110] Nauyen H V,Ngo A V, Seung G L, et al. Obstacle avoidance path planning formobile robot based on multi colony ant algorithm[C]//In: Proceedings of FirstInternational Conference on Advances in Computer-Human Interaction.Martinique: IEEE,2008:285-289.
    [111] Jung L F, Jared S K, James H O and Eliot H W. Three-dimensionalmulti-objective path planning of unmanned aerial vehicles using particle swarmoptimization[C]//In: Proceedings of48th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics, and Materials Conference. Hawaii: AIAA,2007:1881-1890.
    [112] Zheng C, Ding M Y, Zhou C P. Real-time route planning for unmanned airvehicle with an evolutionary algorithm[J]. International Journal of PatternRecognition and Artificial Intelligence,2003,17(1):63-81.
    [113] Zheng C, Li L, Xu F, et al. Evolutionary route planner for unmanned airvehicles[J]. IEEE Transactions on Robotics,2005,21(4):609-620.
    [114]傅阳光,周成平,丁明跃.基于混合量子粒子群优化算法的三维航迹规划[J].宇航学报,2010,31(12):2657-2664.
    [115] Li Qing, Gao Wei, Lu Yu-Ping, Shen Chun-Lin. Aircraft route optimization usinggenetic algorithms[C]//In: Proceedings of the Second International Conferenceon “Genetic Algorithms in Engineering Systems: Innovations and Applications”.University of Strathclyde, Glasgow, UK: IET Conference Publications,1997:394-397.
    [116]汲万峰,姜礼平,朱建冲等.基于遗传算法的航路规划编码研究[J].电光与控制,2010,17(6):44-47,64.
    [117] Kennedy J, Eberhart R. Particle swarm optimization[C]//In: Proceedings of IEEEInternational Conference on Neural Networks. Perth, Australia: IEEE,1995:1942–1948.
    [118] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//In:Proceedings of the6th International Symposium on Micro Machine and HumanScience. Piscataway, USA: IEEE,1995:39–43.
    [119] Shi Y, Eberhart R. A modified particle swarm optimizer[C]//In: Proceedings ofIEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE,1998:303–308.
    [120]倪天权,王建东,刘以安.交叉粒群算法在无人机航路规划中的应用[J].系统工程与电子技术,2011,33(4):806-810.
    [121] Bergh F van den. An analysis of particle swarm optimizers[PH.D. thesis].Depatment of Computer Science, University of Pretoria, Pretoria, South Africa,2002.
    [122]纪震,周家锐,廖惠连等.智能单粒子优化算法[J].计算机学报,2010,33(3):556-561.
    [123]李娜.对地攻击路径规划算法的研究[D].北京:北京航空航天大学硕士学位论文,2005.
    [124]高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004,24(5):140-143.
    [125] McLain T W, Bread R W. Coordination variables, coordination functions, andcooperative timing missions[J]. AIAA Journal of Guidance, Dynamics, andControl,2005,28(1):150-161.
    [126]苏菲,彭辉,沈林成.基于协进化多子群蚁群算法的多无人作战飞机协同航迹规划研究[J].兵工学报,2009,30(11):1562-1568.
    [127]王玉林,周绍磊,周超.基于遗传算法的反舰巡航导弹协同航迹规划[J].战术导弹技术,2010,(6):1-7.
    [128]潘哲.常值风作用下的反舰导弹多弹协同航路规划[J].海军航空工程学院学报,2011,26(2):219-222,228.
    [129] Nicola C, John J E, Emilio F, Rasmussen S J, Schumacher C J. Micro UAV pathplanning for reconnaissance in wind [C]//In: Proceedings of the2007AmericanControl Conference. New York, USA: IEEE Conference Publications,2007:5310-5315.
    [130] Timothy G. M., Stephen S. J., Karl H.. Optimal path planning in a constant windwith a bounded turning rate[C]//In: Proceedings of the2006AIAA Conferenceon Guidance, Navigation, and Control. San Francisco, California:AIAA,2006:1-11.
    [131]郭新奇,严建钢,蒋志忠等.一种反舰导弹航路规划模型[J].军事运筹与系统工程,2009,23(3):46-50,71.
    [132]陈玉文.编队攻击集群目标时的反舰导弹弹道规划[J].海军航空工程学院学报,2009,24(1):89-92.
    [133]徐培德,余滨,马满好,祝江汉.军事运筹学基础[M].长沙:国防科技大学出版社,2007.
    [134] Jason A. The essential visibility graph: an approach to global motion planning forautonomous mobile robots [C]//In: Proceedings of IEEE InternationalConference on Robotics and Automation. Nagoya, Japan,1995. New York: IEEE,1995:1958-1963.
    [135]刘钢,老松杨,侯绿林,谭东风.知识引导的智能优化算法在反舰导弹航路规划中的应用[J].湖南大学学报(自然科学版),2013,40(1):103-108.
    [136]阚亚斌.反舰导弹航路规划战术决策研究[J].装备指挥技术学院学报,2005,16(2):74-79.
    [137] Han-Pang Huang, Shu-Yun Chung. Dynamic Visibility Graph for PathPlanning[C]//In: Proceedings of2004IEEE/RSJ International Conference onIntelligent Robots and Systems. Ssndai, Japan, September28-October2,2004:2813-2818.
    [138]周其忠,闫利,关世义等.一种针对运动目标的快速航迹规划方法[J].系统仿真学报,2007,19(5):987-989.
    [139] Helgason R V, Kennington J L, Lewis K H. Grid Free Algorithms for StrikePlanning for Cruise Missiles[R].Final technical rept.27February1998.AD-A338548.
    [140]邢立宁.演化学习型智能优化方法及其应用研究[D].长沙:国防科学技术大学,2009.
    [141] Blumberg B, Meyer J A, Pfeifer R, Wilson S W. From Animals to Animats[C]//In:Proceedings of the Fifth International Conference on Simulations of AdaptiveBehavior. The MIT Press/Bradford Books,1998.
    [142] Bonabeau E, Theraulaz G. Swarm smarts[J] Scientifc American2000:72-79.
    [143] Rudolph G.. Convergence analysis of canonical genetic algorithms[J]. IEEETransactions on Neural Networks,1994,5(1):96-101.
    [144]曹先彬,许凯,章洁等.基于生命期引导的生态进化模型[J].软件学报,2000,11(6):823-828..
    [145]邢立宁,陈英武.基于知识的智能优化引导方法研究进展[J].自动化学报,2011,37(11):1285-1289.
    [146]范磊,阮怀忠,焦誉等.用归纳学习引导进化[J].中国科学技术大学学报,2001,31(5):565-570,634.
    [147] DeJong K A. An Analysis of the Behavior of a Class of Genetic AdaptiveSystems[D].Michigan: University of Michigan,1975.
    [148] Bhandari D, et al. Genetic algorithm with elitist model and its convergence[J].International Journal of Pattern Recognition and Artificial Intelligence,1996,10(6):734-747.
    [149] Jones T. Crossover, macromutation and population-based search[C]//In:Eshelman Led. Proceedings of the6th International Conference on GeneticAlgorithms. San Francisco, CA: Morgan Kaufmann Publishers,1995:73-80.
    [150] Schradoph N N, et al. Dynamic parameter encoding for genetic algorithms[J].Machine learning,1992,9(1):9-21.
    [151] Srinivas M, et al. Adaptive probabilities of crossover and mutation in geneticalgorithms[J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656-667.
    [152] Sebag M, Ravise C, Schoenauer M. Controlling evolution by means of machinelearning[C]//Proceedings of the Fifth Annual Conference on EvolutionaryProgramming. San Diego, California: The MIT Press,1996:57-66.
    [153]申元霞,王国胤,曾传华.相关粒子群优化模型[J].软件学报,2011,22(4):695-708.
    [154] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEETransactions on Systems, Man and Cybernetics,2009,39(6):1362-1382.
    [155] Chen D B, Zhao C X. Particle swarm optimization with adaptive population sizeand its application[J]. Applied Soft Computing,2009,9(1):39-48.
    [156]唐苏妍,朱一凡,张伟等.一种基于创造性思维的粒子群优化算法[J].控制与决策,2011,26(8):1181-1186.
    [157] Egrioglu Erol, Aladag Cagdas Hakan, Basaran Murat A etc. A new approachbased on the optimization of the length of intervals in fuzzy time series[J].Journal of Intelligent and Fuzzy Systems,2011,22(1):15-19, DOI:10.3233/IFS-2010-0470.
    [158] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [159] TAKAHAMA T, SAKAI S. Constrained optimization by applying the alphaconstrained method to the nonlinear simplex method with mutations[J]. IEEETransactions on Evolutionary Computation,2005,9(5):437–451.
    [160] WANG Y, CAI Z X, ZHOU Y R, et al. An adaptive tradeoff model for constrainedevolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2008,12(1):80-92.
    [161] RUNARSSON T P, YAO X. Search biases in constrained evolutionaryoptimization[J]. IEEE Transactions on Systems Man and Cybernetics, PartC–-Applications and Reviews,2005,35(2):233-243.
    [162] Wolpert D H, Macready W G. No Free Lunch Theorems for Optimization[J].IEEETransactions On Evolutionary Computation,1997,1(1):67-82.
    [163]何东晓,周栩,王佐等.复杂网络社区探测—基于聚类融合的遗传算法[J].自动化学报,2010,36(8):1160-1170.
    [164]张勇,巩敦卫,张婉秋.一种基于单纯形法的改进微粒群优化算法及其收敛性分析[J].自动化学报,2009,35(3):289-298.
    [165] Alfi Alireza. PSO with adaptive mutation and inertia weight and its application inparameter estimation of dynamic systems[J]. Acta Automatica Sinica,2011,37(5):541-549.
    [166]苗东升.系统科学原理[M].北京:中国人民大学出版社,1990.
    [167]刘钢,周智超,徐清华,沈医文.基于舰艇编队的反舰导弹航路规划[J].电光与控制,2009,16(2):11-17.
    [168]杨祖快,刘鼎臣.反舰导弹自主式火力分配[J].火力与指挥控制,2005,30(2):1-4.
    [169]徐建志,刘鼎臣.反舰导弹火力分配方式的发展与变革[J].飞航导弹,2004,34(3):38-40.
    [170] Orhan Karasakal. Air defense missile-target allocation models for a naval taskgroup [J]. Computers&Operations Research,2008,35(6):1759-1770.
    [171]王小艺,侯朝桢,原菊梅,等.防空火力分配建模及优化方法研究[J].控制与决策,2006,21(8):913-917.
    [172]阮旻智,李庆民,刘天华.编队防空火力分配建模及其优化方法研究[J].兵工学报,2010,31(11):1525-1529.
    [173]杨飞,王青,董朝阳.实施饱和攻击的导弹多目标火力分配决策[J].北京航空航天大学学报,2010,36(8):996-999.
    [174]杨飞,董朝阳,王青.实施饱和攻击的反舰导弹武器目标分配[J].系统仿真学报,2011,23(2):316-320.
    [175]卢发兴,吴玲,董银文.带航路规划的反舰导弹盲目射击攻击模型及性能研究[J].电子学报,2009,37(9):1956-1960.
    [176]卢发兴,吴玲,董银文.无航路规划能力的反舰导弹盲目射击[J].系统工程与电子技术,2009,31(11):2658-2662.
    [177]徐加强,毕义明,汪民乐,梁伟.基于时空约束的常规导弹火力分配建模与实现[J].系统工程与电子技术,2011,33(9):2025-2029.
    [178]刘钢,老松杨,王志勇.基于UML的舰艇编队导弹航路规划时序描述[J].战术导弹技术,2010,31(3):101-105.
    [179]刘钢,李赟,老松杨,谭东风.基于DoDAF的舰艇编队导弹航路规划体系结构建模[J].火力与指挥控制,2011,36(4):26-29,39.
    [180]刘钢,老松杨,谭东风.基于HLA的编队导弹航路规划仿真系统设计[J].电光与控制,2010,17(8):59-64,72.
    [181]刘钢,周智超,陈文伟.水面舰艇编队导弹航路规划决策支持系统设计[C]//火力与指挥控制研究会2008年学术年会,2008:136-139.
    [182]张学锋,徐国雄,方木云,等.防空火箭武器仿真系统的设计与实现[J].系统工程与电子技术,2010,32(3):589-591.
    [183]刘钢,老松杨,侯绿林,谭东风.舰艇编队导弹航路规划仿真系统设计与实现[J].国防科技大学学报,2011,33(3):157-163.
    [184]张卫,张童,查亚兵.基于HLA分布式仿真的Web服务化[J].国防科技大学学报,2008,30(5):120-124.
    [185] IEEE1516.3.IEEE Recommended Practice for High Level ArchitectureFederation Development and Execution Process[S].New York: Institute ofElectrical and Electronic Engineers, Inc,2003.
    [186]唐见兵,焦鹏,查亚兵,等.基于BOM的HLA仿真系统可信性研究[J].国防科技大学学报,2008,30(5):131-134.
    [187]周彦,戴剑伟. HLA仿真程序设计[M].北京:电子工业出版社,2002.
    [188]武志强,杨瑞光,田川.基于UML的防空C3I系统建模[J].电脑开发与应用,2005,18(5):9-11.
    [189] Whittle J. Formal Approach to System Analysis Using UML: AnOverview[J].Journal of Database Management,2000,11(4):4-13.
    [190] Terry B, Jesse D. Using objected-oriented and UML tools for hardware design: Acase study[J].Systems Engineering,2003,6(1):28-48.
    [191]李羚玮,陈童,郭波.基于随机服务资源管理对象的装备维修保障系统仿真建模[J].国防科技大学学报,2010,32(2):124-129.
    [192]牟传兴.基于UML和统一过程的建模技术的研究与应用[D].北京:北京工业大学,2003.
    [193] IEEE1516.2.IEEE Standard for Modeling and Simulation High LevelArchitecture-Object Model Template[S].New York: Institute of Electrical andElectronic Engineers, Inc,2000.
    [194]梁彦刚,唐国金,雍恩米.基于HLA导弹攻防仿真系统分析与设计[J].国防科技大学学报,2004,26(5):18-21.
    [195]杨军,余永利,张彦忠等.基于HLA/RTI的维修保障仿真系统及势态显示实现[J].系统仿真学报,2007,19(21):4908-4911.
    [196]朱卫锋,费奇,张金隆.敏捷后勤系统的分布式仿真体系结构[J].系统工程与电子技术,2007,29(2):230-233.
    [197] Hong J E, Bae D H. Software modeling and analysis using a hierarchicalobject-oriented Petri net[J].Information Sciences(S0020-0255),2000,130(4):133-164.
    [198] Fernando V, Carlos M. A Generic Rollback Manager for Optimistic HLASimulations[C]//Proceedings of the Fourth IEEE International Workshop,Distributed Simulation and Real-time Applications. USA:IEEE,2000,77-88.
    [199]甘斌,王建平,林式阳.一种可重用的视景邦元设计与实现[J].计算机仿真,2006,23(4):188-191.
    [200] Jie Fei, Li Fengxia, and Lu Zhaohan. Study of CGF Task Simulation SystemBased on HLA[C]//In: Proceedings of2012Asia Simulation Conference/International Conference on System Simulation and Scientific Computing.Shanghai: IEEE,2012.361-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700