用户名: 密码: 验证码:
基于CoupModel的三峡库区四面山典型农林地水、热交换模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选取位于长江三峡库区库尾的重庆四面山为试验区,利用CoupModel模拟了不同土地利用方式,即阔叶林(木荷×石栎)、针叶林(杉木×马尾松)和农地(玉米)2008—2009年土壤—植被—大气系统的水分和热量差异,可为三峡库区植树造林和生态重建等提供科学依据。
     (1)对CoupModel土壤参数,包括土壤颗粒组成、密度、孔隙度、水分特征曲线、饱和导水率、土壤水分和土壤温度等物理性质研究表明,农地土壤质地较细,孔隙度低,而林地土壤具有相对疏松、通透性好的结构,提高了水分的入渗能力。森林植被对土壤物理性质的改善和提高具有重要作用。试验地土壤水分和温度均具有明显的季节变化特征,土壤水分平均值大小依次为农地(12.57%)>针叶林(10.86%)>阔叶林(10.47%),农地土壤水分含量更高、变异性更小。土壤温度平均值大小依次为农地(19.41℃)>针叶林(18.95℃)>阔叶林(18.87℃)。冠层生长状况更好、郁闭度更大的森林植被对土壤表面的遮蔽作用更大,因而生长季期间林地土壤温度更低,且变化趋势更为缓和,振幅更小。
     (2)土壤水分、土壤温度和冠层截留量模拟值与实测值拟合度较高(决定系数R2为0.69-0.99),CoupModel在三峡库区四面山地区具有较好的适用性。采用OAT方法(即每次只改变一个参数的方法)对模型参数进行了敏感性分析,结果表明,对土壤水分模拟结果影响较大的参数有孔隙分布参数、进气吸力、残留含水量、饱和含水量、饱和导水率和蒸发阻力系数。而对土壤温度模拟结果敏感性较大的参数有土壤热传导系数、有机质层厚度、植被反照率、消光系数、水汽压亏缺、蒸发阻力系数。
     (3) CoupModel对农林地水量平衡模拟结果表明,2008-2009年3种植被覆盖类型SPAC系统水分输入均为2214mm,阔叶林水分支出(2224mm)高于收入,这是引起阔叶林地土壤储水而呈现负补偿现象的主要原因。蒸散是水量平衡中最主要的支出项,其比例高达61%,大小依次为阔叶林(720mm/a)>针叶林(700mm/a)>农地(601mm/a);其季节变化规律主要由叶面积指数(LAI)的变化规律来决定(R2为0.61-0.77),而在日时间尺度上,植被蒸散量主要受气象和土壤因素的影响。农地年均深层渗透量为452mm/a,分别比阔叶、针叶林高60mm、47mm,且在降水较多的年份表现更加明显。研究区农林地水分条件具有较大差异,水分盈余是农地水量平衡的主要特征,而林地却发生了春旱和秋旱。造林对水量平衡具有重要影响,森林在提高系统蒸散量的同时,也减小了土壤水分的深层渗透以及对地下水的补给,使水分分配过程变得更加复杂。树种对水量平衡亦有影响,在以提高地下水补给为目标的造林地区应注意树种的选择。
     (4) CoupModel对农林地热量交换模拟结果表明,2008—2009年样地接收太阳辐射量实测值为7096MJ·m-2,与农地相比,林地能够接收到更大的净辐射量,这主要与地表反射率有关。潜热是热量耗散的主要支出项,其值从大到小依次为阔叶林(1702MJ·m-2)>针叶林(1642MJ·m-2)>农地(1415MJ·m-2),分别占净辐射的83%、81%和73%。感热通量的大小决定于乱流交换系数和温度的垂直梯度,农地感热通量大于林地,这主要是农地乱流作用更强、表层土壤气温更高的缘故。试验期间农地土壤热通量为正值(2MJ·m-2),处于热汇阶段,土壤吸收环境中的热量,阔叶林和针叶林分别为-35MJ·m-2和-28MJ·m-2。模拟结果表明,阔叶林、针叶林和农地植被层每蒸散1kg水分所消耗的能量分别为2.33MJ、2.30MJ和2.28MJ能量。林地系统获得的能量约60%用于植被蒸散耗能,农地则同时以植被蒸散和土壤蒸发耗能为主。水分条件决定了热量的分配形式和影响潜热通量、感热通量占净辐射的比例,同时热量供给的多少也决定了水分可以蒸散出去的量,土壤—植被—大气系统呈现一种水热相互制约的局面。森林植被恢复后,通过其反射率、蒸散等的变化对水分和热量具有调节作用,森林能够提高水分和热量的利用效率。
Based on field measurement, the CoupModel (Coupled heat and mass transfer model for soil-plant-atmosphere system) was applied to simulate water balance and heat transfer in three kinds of vegetation types, including broadleaved forest (Schima superba and Lithocarpus glaber), coniferous forest (Cunninghamia lanceolata and Pinus massoniana) and farmland(Zea mays) in Simian Mountain, which located in the terminal Three Gorges Reservoir Area of China. This study can provide foundation for the management afforestation and ecological reconstruction.
     (1) Soil particle composition, bulk density, porosity, water characteristic curve, saturated hydraulic conductivity, soil moisture and temperature among different vegetation types were studied. The results showed that the farmland had finer soil texture with lower porosity, while forest had a porous soil structure, which can increase water infiltration capacity. Forest played an important role on improving soil physical properties. Soil moisture and temperature had obvious seasonal variation characteristics, the average values of soil moisture were as follows:broad-leaved forest (10.47%)     (2) Simulated soil moisture, soil temperature and canopy capacity were fairly consistent with measured ones and the determination coefficient (R2) was0.69to0.99. It meant that the model had a good applicability in this region. And then, the OAT method (one factor at a time) was adopted to analyze sensitivities of the model parameters. The results of the sensitivity analysis indicated that, many parameters had great influence on the simulation of soil moisture, they were lambda, air entry, residual water, saturation, matrix conductivity and PsiRs-lp. While scaling coefficient, organic layer thick, plant albedo, light extinction coefficient, cond VPD and PsiRs-lp impacted on simulation of soil temperature.
     (3) Water balance simulation showed that water input/precipitation was2214mm for all the plots during the experimental period, but the water consumption (2224mm) was more than income in the broad-leaved forestland, this was the main reason causing soil water deficit. Evapotranspiration was main output of water balance with the percentage up to61%, and the figures were ranked as follows:broad-leaved forest (720mm/a)> coniferous forest (700mm/a)> farmland (601mm/a). In the growing season, leaf area index (LAI) determined the seasonal variation of ET, while weather condition determined its variation at a much smaller time scale such as one day. Annual simulated deep percolation decreased by60mm for broad-leaved forest and47mm for coniferous forest compared with that for farmland (452mm/a), and it was even greater in wet year. There was obvious difference between forestland and farmland for water conditions, the water balance of farmland was characterized by moisture surplus, while spring and autumn drought occurred in forestlands. This study indicated that a shift from cropland to forest would lead to an increase in evapotranspiration while a reduction in deep percolation or groundwater recharge, afforestation made the water balance process more complicated. Model results also indicated that vegetation species significantly influence the magnitude of water balance components, which call for further attention to the selection of tree-species when planning future afforestation projects.
     (4) Simulations of heat transfer showed that the plots received the amount of solar radiation was7096MJ-m-2during the experimental period of2008and2009. Compared with cropland, forestland received lardger amount of net radiation, this is mainly related with the surface reflectance. Latent heat was the main output in thermal dissipation, it ranged as follows:broadleaved forest (1702MJ·m-2)> coniferous forests (1642MJ-m'2)> farmland (1415MJ·m-2), respectively, and they accounted for83%,81%and73%of the net radiation. The sensible heat flux was higher in the the farmland than the forestland, for the bigger turbulent exchange and the higher vertical gradient of temperature in the farmland plot. During the experimental period, the soil heat flux was above zero for the farmland plot, it meant thatthe farmland soil needed to absorb heat from the environment. But the values of soil heat flux for the broad-leaved and coniferous forestland were only-35MJ·m-2and-28MJ·m-2. Simulation results also implied that it required2.33MJ energy for broadleaf-conifer forest and2.30MJ and energy for coniferous forest to evapotranspire1kg water, while for farmland, this value was2.28MJ. Forest consumed approximately60%of energy on transpiration, but for farmland, energy was consumed by plant transpiration and soil evaporation. Soil moisture conditions determined the distribution of heat flux, and in turn heat supply also impacted the amount of evapotranspiration, water and heat are interdependent in the soil-vegetation-atmosphere transfer system. After afforestation, water and heat balance was regulated by reflectivity or evapotranspiration of forest. Forest can improve the utilization efficiency of water and heat.
引文
Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of American Journal, 1981,45:1023-1031.
    BAHC. The operational plan, IGBP:A study of global change of ICSC[R]. IGBP report No. 27,1993:1-84.
    Bastrup-Birk A., Gundersen P. Water quality improvements from afforestation in an agricultural catchment in Denmark illustrated with the INCA model[J]. Hydrol. Earth Syst. Sci.,2004,8(4):764-777.
    Bergh J, Linder S, Lundmark T, et al. The effect of water and nutrient availability on the productivity of Norway Spruce in northern and southern Sweden[J], Forest Ecology Management,1999,119(1-3): 51-62.
    Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of Hydrology,1982,55,3-23.
    Brooks R H, Corey A T. Hydraulic properties of the porous media[M].Fort Collins:Colorado State University Press,1964:3-27.
    Brooks R H, Corey A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division,1996,92(2):61-88.
    Burrough P A.Multiscale sources of spatial variability in soil variation[J]. Journal of Soil Science, 1983,34:577-597.
    Calder I R. The Blue Revolution land use and integrated water resources management[M]. London: Earthscan Publications Ltd.,1999:23-26.
    Campell G S. A simp lemethod for determ ining unsaturated hydraulic conductivity from moisture retention data[J]. Soil Science,1974,117:311-314.
    Chen H S, Shao M A, Li Y Y. The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. Journal of Hydrology,2008,360,242-251.
    Cheng Genwei. Forest hydrological effects in the upper Yangtze River vallery[J] Ambio,1999,28(5): 456-459.
    Christiansen J R, Elberling B, Jansson P E. Modeling water balance and nitrate leaching in temperate Norway spruce and beech forests located on the same soil type with the CoupModel[J]. Forest Ecology and Management,2006,237(3):545-556.
    Connolly R D. Modelling effects of soil structure on the water balance of soil-crop systems:a review[J]. Soil & Tillage Research,1998,48:1-19.
    Conrad Y, Fohrer N. A test of CoupModel for assessing the nitrogen leaching in grassland systems with two different fertilization levels[J]. Journal of plant nutrition and soil science,2009a,172(6): 745-756.
    Conrad Y, Fohrer N. Application of the Bayesian calibration methodology for the parameter estimation in CoupModel[J]. Advances in Geosciences,2009b,21:13-24.
    Conrad Y, Fohrer N. Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field[J].Physics and Chemistry of the Earth,2009c,34: 530-540.
    [18]Farley K A., Jobbagy E G, Jackson R B. Effects of afforestation on water yield:a global synthesis with implications for policy[J]. Global Change Biology,2005,11:1565-1576.
    [19]Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I:Theory and development[J]. Transactions of the ASAE,1989,32(2):565-571.
    [20]Friedrich K, Molders N G T. On the influence of surface heterogeneity on the bowen-ratio:a theoretical case study[J], Theor Appl Climatol,2000,65:181-196.
    [21]Gardner W R.1970. Field measurement of soil water diffusivity[J]. Soil Science Society of American Journal,1970,34:832-833.
    [22]Gash J H C, Wright IR, Lloyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain [J]. Journal of Hydrology,1980,48:89-150.
    [23]Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands[J]. Agricultural and Forest Meteorology,2000,100(4):291-308.
    [24]Gustafsson D, Lewan E, Jansson P E. Modeling water and heat balance of the boreal landscape-comparison of forest and arable land in Scandinavia[J]. Journal of Applied Meteorology,2004,43(11): 1750-1767.
    [25]Hansen K, Rosenqvist L, Vesterdal L, Gundersen P. Nitrate leaching from three afforestation chronosequences on former arable land in Denmark[J]. Global Change Biology,2007,13,1250-1264.
    [26]Hatton T. Dyce P, Zhang Lu, et al.1995. WAVES-an ecohydrological model of the surface energy and water balance:Sensitivity analysis[M]. CSIRO Div. Water Resources, Technical Memorandum 95/2, Canberra, Australia.
    [27]Heal K V, Stidson R T, Dickey C A, et al. New data for water losses from mature Sitka spruce plantations in temperate upland catchments[J].Journal of Hydrology Science,2004,49:477-493.
    [28]Hillel D. Environmental Soil Physics[M]. San Diego:Academic Press,1998.
    [29]Hollesen J, Elberling B, Hansen B U. Modelling subsurface temperatures in a heat producing coal waste rock pile, Svalbard (78°N) [J]. Cold Regions Science and Technology,2009,58:68-76.
    [30]Hollesen J, Elberling B, Jansson P E. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles [J]. Cold Regions Science and Technology,2011,65:258-268.
    [31]Hu Wei, Shao Ming-an, Han Fengpeng, et al. Watershed scale temporal stability of soil water content[J].Geoderma,2010,158:181-198.
    [32]Iritz Z, Lindroth A. Energy partitioning in relation to leaf area development of short-rotation willow coppice[J]. Agriculture and Forest Meteorology,1996,81:119-130.
    [33]Issaks E H, Srivastava R M. An introduction to applied geostatistics[M]. New York:Oxford Univ Press,1989.
    [34]Jacobs J M, Mergelsberg S L, Lopera A F. Evapotranspiration from a wet prairie wetland under drought conditions:Paynes Prairie, Florida,USA[J]. Wetlands,2002,22(2):374-385.
    [35]Jansson P E, Cienciala E, Grelle A, et al. Simulated evapotranspiration from the Norunda forest stand during the growing season of a dry year[J]. Agricultural and Forest Meteorology,1999, 98-99:621-628.
    [36]Jansson P E, Karlberg L. Coupled heat and mass transfer model for soil-plant-atmosphere systems[M]. Stockholm:Royal Institute of Technology, Dept of Civil and Enviromental Engineering,2004.
    [37]Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modelling & Software,2001,16:37-46.
    [38]Jansson P E, Svensson M, Kleja D B, et al. Simulated climate change impacts on fluxes of carbon in Norway spruce ecosystems along a climatic transect in Sweden[J]. Biogeochemistry,2008,89(1): 81-94.
    [39]Jansson P E. CoupModel:model use, calibration, and validation[J]. Transactions of the ASABE,2012, 55(4):1-11.
    [40]Karlberg L, Ben-Gal A, Jansson P E, et al. Modeling transpiration and growth in salinity-stressed tomato under different climatic conditions[J]. Ecological Modeling,2006,190(3-4):15-40.
    [41]Karlberg L, Gustafsson D, Jansson P E, et al. Modeling carbon turnover in five terrestrial ecosystems in the boreal zone using multiple criteria of acceptance[J]. AMBIO,2006,35(8):448-458.
    [42]Karlberg L, Jansson P E, Gustafsson D. Model-based evaluation of low-cost drip-irrigation systems and management strategies using saline water[J]. Irrigation Science,2007,25:387-399.
    [43]Kelliher F M, Leuning R, Raupach M R, et al. Maximum conductances for evaporation from global vegetation types[J]. Agricultural and Forest Meteorology,1995,73(1-2):1-16.
    [44]Kleja D B, Svensson M, Majdi H, et al. Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden[J]. Biogeochemistry,2008,89(1):7-25.
    [45]Klemedtsson L, Jansson P E, Gustafsson D, et al. Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[J]. Biogeochemistry,2008,89(1):61-79.
    [46]Koivusalo H, Karvonen T, Paasoner-Kivekas M. Application of a two-dimensional model to calculate water balance of an agricultural hillslope[J]. Physics and Chemistry of Earth (B),1999,24 (4):313-318.
    [47]Korsaeth A, Bakken L R, Riley H. Notrogen dynamics of grass as affected by N input regimes, soil texture and climate:lysimeter measurements and simulations [J]. Nutrient Cycling in Agroecosystems, 2003,66:181-199.
    [48]Ladekarl U L, Rasmussen K R, Christensen S, et al. Groundwater recharge and evapotranspiration for two natural ecosystems covered with oak and heather[J]. Journal of Hydrology,2005,300(1):76-99.
    [49]Li Y L, Wang L H, Zhang G S, et al. Study on heat balance of Pinus S S YL Vestris Var Mongolica Artificial forest in Maow USU sands[J]. Journal of Inner Moncolia Forestry College 4,1998,20 (4):31-36.
    [50]Lohammar T, Larsson S, Linder S, et al. Fast:simulation models of gaseous exchange in Scots pine[J]. Ecological Bulletins,1980,32:505-523.
    [51]Mack U D, Feger K H, Gong Yuanshi, et al. Soil water balance and nitrate leaching in winter-summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain[J]. Journal of plant nutrition and soil science,2005,168(4):454-460.
    [52]Manzi A O, Planto S. Implentation of the ISBA parametrization scheme for land surface processes in a GCM-an annual cycle experiment[J]. Journal of Hydrology,1994,155(3-4):37-46.
    [53]McGinn S M, King K M. Simulataneous measurements of heat, water vapour and CO2 fluxes above afalfa and maize[J]. Agricultural and Forest Meteorology,1990,49(4):331-349.
    [54]Mellander P E, Bergh J, Lundmark T, et al. Recovery of photosynthetic capacity in Scots pine:a modelanalysis of forest plots with contrasting soil temperature[J]. European Journal of Forest Research,2008,127(1):71-79.
    [55]Mellander P E, Laudon H, Bishop K. Modelling variability of snow depths and soil temperatures in Scots pine stands[J]. Agricultural and Forest Meteorology,2005,133(11):109-118.
    [56]Mellander P E, Lofvenius M O, Laudon H. Climate change impact on snow and soil temperature in boreal Scots pine stands[J]. Climatic Change,2007,85(1):179-193.
    [57]Mellander P E, Stahli M, Gustafsson D, et al. Modelling the effect of low temperaturs on transpiration by Scots pine[J]. Hydrological Processes,2006,20:1929-1994.
    [58]Mo Xingguo, Liu S, Lin Z, et al. Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain[J]. Ecological Modelling,2005,183(2-3):301-322.
    [59]Moehrlen C. Literature review of current used SVAT models[R]. University College Cork Department of Civil and Environmental Engineering Internal Report,1999,04,99.
    [60]Monteith J L. Evaporation and environment[A], Proceedings of the 19th Symposium of the Society for Experimental Biology[C]. Cambridge University Press, Cambridge,1965,19:205-234.
    [61]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513-522.
    [62]Murai H, Iwasaki I. Study on the mechanism of soil and water conservation in forestland[R]. Report for Forest Field,1975,274:23-84.
    [63]Newell R C, Johson L C. Adjustment of the Conents of Energy Balance in Response to Temperature Change in Ostrea edulis[J]. Oecologia (Bert),1977,30:97-110.
    [64]Nykanen A, Salo T, Granstedt A. Simulated cereal nitrogen uptake and soil mineral nitrogen after clover-grass leys[J]. Nutrient Cycling in Agroecosystems,2009,85:1-15.
    [65]Nylinder J, Stenberg M, Jansson P E, et al. Modelling uncertainty for nitrate leaching and nitrous oxide emissions based on a Swedish field experiment with organic crop roation[J]. Agriculture, Ecosystems & Environment,2011,141:167-183.
    [66]Okkonen J, Klove B. A sequential modeling approach to assess groundwater-surface water resources in a snow dominated region of Finland[J]. Journal of Hydrology,2011,411:91-107.
    [67]Rankinen K, Salo T, Granlund K, et al. Simulated nitrogen leaching, nitrogen mass field balances and their correlation on four farms in south-western Finland during the period 2000-2005[J]. Agricultural and Food Science,2007,16:387-406.
    [68]Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics,1931,1(1): 318-333.
    [69]Rodriguez-Iturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research,2000,36(1):3-9.
    [70]Rosenqvist L, Hansen K, Vesterdal L, et al. Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden[J]. Agricultural and Forest Meteorology,2010,150(2):196-207.
    [71]Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests,1. Derivation of themodel from observation in a plantation of Corsican Pine[J]. Agricultural Meteorology,1971-1972,9:367-384.
    [72]Sahin V, Hall M J. The effects of afforestation and deforestation on water yields[J]. Journal of Hydrology,1996,178:293-309.
    [73]Schmidt-Walter P, Lamersdorf N P. Biomass production with willow and poplar short rotation coppices on sensitive areas-the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany[J]. BioEnergy Research,2012,5(3):546-562.
    [74]Scott D F, Le Maitre D C, Fairbanks D H K. Forestry and streamflow reductions in South Africa:a reference system for assessing extent and distribution[J]. Water SA,1998,24:187-199.
    [75]Shaw J N, West L T, Radcliffe D E, et al. Preferential flow and Pedotransfer functions for transport properties in sandy Kandiuduhs[J]. Soil Science Society America Journal,2000,64:670-687.
    [76]Simunek J M, Sejna T, van Genuchten M T. The HYDRUS-1D software package for simulating the one2dimensional movement of water,heat,and multiple solutes in variably2saturated media[M]. Version 2.0. Riverside,California:Colorado School of Mines Pub2 lishers,1998.
    [77]Souch C, Wolfe C P, Grimmond C S B. Wetland evaporation and energy partitioning:Indiana dunes national lakeshore[J]. Journal of Hydrology,1994,184 (3):189-208.
    [78]Stahli M, Gustafsson D. Long-term investigations of the snow cover in a subalpine semi-forested catchment[J]. Hydrological Processes,2006,20:411-428.
    [79]Svensson M, Jansson P E, Gustafsson D, et al. Bayesian calibration of a model describing carbon, waterand heat fluxes for a Swedish boreal forest stand[J]. Ecological Modelling,2008b,213:331-344.
    [80]Svensson M, Jansson P E, Kleja Berggren D. Modelling soil C sequestration in spruce forest ecosystems along a Swedish transect based on current conditions[J]. Biogeochemistry,2008a,89(1): 95-119.
    [81]Tubiello F N, Soussana J, Howden S M. Crop and pasture response to climate change[J]. PNAS, 2007,104:19686-19690.
    [82]Turcotte D L. Fractal and fragmentation[J]. Journal of Geophysical Research,1986,91:1921-1926.
    [83]Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of American Journal,1989,53:987-996.
    [84]Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions:analysis and limitations[J]. Soil Science Society of American Journal,1992,56:362-369.
    [85]Van Dam J C J, Huygen J G, Wesseling R A, et al.1997. SWAP version 2.0, Theory. Simulation of water flow, solute transport and plant growth in the Soil water-Atmosphere-Plant environment[M]. Technical Document 45, DLO Winand Staring Centre, Wagesnigen,1997. Report 71, Department Water Resources, Wageningen Agricultural University,1997.
    [86]Van der Salm C, Van der Salm H D, Wieggers R, et al. The effect of afforestation on water recharge and nitrogen leaching in the Netherlands [J]. Forest Ecology and Management,2006,221(1-3): 170-182.
    [87]Van Genuchten M T. A closed-form Equation predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [88]Verstraeten W W, Veroustraete F, Feyen J. Assessment of evapotranspiration and soil moisture content across different scales of observation[J].Sensors,2008,8(1):70-117.
    [89]Vose J M, Swank W T, Harvey G J, et al. Leaf water relations and sapflow in eastern cottonwood (Populus deltoids Bartr.) trees planted for phytoremediation of a groundwater pollutant. International Journal of Phytoremediation,2000,2(1):53-73.
    [90]Wang Li, Wei Sanping, Horton Robert,et al. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China[J]. Catena,2011,87(1):90-100.
    [91]Wang Li, Wei Sanping, Shao H B, et al. Simulated water balance of forest and farmland in the hill and gully region of the Loess Plateau in China[J]. Plant Biosystems,2012,146(S1):226-243.
    [92]Whitehead P G, Robinson M. Experimental basin studies, an international and historical perspective of forest impacts[J]. Journal of Hydrology,1993,145,217-230.
    [93]Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy balance partitioning beneath a deciduous forest over an annual cycle[J]. Agricultural and Forest Meteorology,2000,102:83-103.
    [94]Wu Jian, Jansson P E, Van der Linden L, et al. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest[J]. Ecological Modelling,2013,260:50-61.
    [95]Wu Jianguo, Huang J H, Han X G, et al. The Three Gorges Dam:an ecological perspective[J]. Frontiers in Ecology and the Environment,2004,2(5):241-248.
    [96]Wu Sihong, Jansson P E, Kolari P. Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal Scots pine ecosystem[J]. Ecological Modelling,2011b,222(17):3103-3119.
    ] Wu Sihong, Jansson P E, Kolari P. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem[J]. Agricultural and Forest Meteorology,2012a,156:85-103.
    ] Wu Sihong, Jansson P E, Zhang Xingyi. Modelling temperature, moisitue and surface heat balance in bare soil under seasonal frost conditions in China[J]. European Journal of Soil Science,2011a,62(6): 780-796.
    ] Wu Sihong, Jansson P E. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem[J]. Hydrology and Earth System Sciences Discussion,2012b,9:6419-6455.
    0] Xu X Y, Tong L, Li F S, et al. Sap flow of irrigated Populus alba var. pyramidalis and its relationship with environmental factors and leaf area index in an arid region of Northwest China [J]. Journal of Forestry Research,2011,16(2):144-152.
    1] Zhang Shulan, Lovdahl L, Grip H, et al. Modeling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau[J]. Soil & Tillage Research,2007a,93(2):283-298.
    2] Zhang Shulan, Simelton E, Lovdahl L, et al. Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China [J]. Field Crops Research,2007b,100: 311-319.
    3] Zhou G Y, Morris J D, Yan J H, et al. Hydrological impacts of reaforestation with eucalyptus and indigenous species:a case study in southern China[J]. Forest Ecology and Management,2002,167, 209-222.
    4] Zhou Jian, Kinzelbach W, Cheng Guodong, et al. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China[J].Cold Regions Science and Technology,2013,90-91:38-52.
    5] Zhou Q Y, Shimada J, Sato A. Three-dimensional spatial and temporal monitoring of water content using electrical resistivity tomography[J]. Water Resour Res,2001,37:273-285.
    6] Zhu Liwei, Zhao Ping. Temporal variation in sap-flux-scaled transpiration and cooling effect of a subtropical Schima superba plantation in the urban area of Guangzhou[J]. Journal of Integrative Agriculture,2013,12(8):1350-1356.
    7] Zhu Z L, Sun X M, Zhang R H. Statistical analysis and comparative study of energy balance components estimated using micrometeorological techniques during HUBEX/IOP 1998/99[J]. Advances in Atmospheric Sciences,2003,20(2):285-291.
    8] Zimmermann B, Elsenbeer H. Spatial and temporal variability of soil saturated hydraulic conductivity in gradient of disturbance[J]. Journal of Hydrology,2008,361(1/2):87-95.
    9]鲍文,包维楷,何丙辉,等.岷江上游油松人工林对降雨的截留分配效应[J].北京林业大学学报,2004,26(5):10~16.
    0]蔡福,周广胜,李荣平,等.东北玉米农田下垫面参数动态研究[J].生态学杂志,2011,30(3):494~501.
    1]蔡庆华,刘敏,何永坤,等.长江三峡库区气候变化影响评估报告[M].北京:气象出版社,2010.
    2]蔡锡安,任海,彭少麟,等.鹤山南亚热带草坡生态系统的热量平衡[J].热带亚热带植物学报,1997,5(1):27~32.
    3]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2006,37(5):534~542.
    4]陈洪松,邵明安,王克林.黄土区荒草地土壤水平衡的数值模拟[J].土壤学报,2005,42(3):353~359.
    5]陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,6(5):474~481.
    6]陈伟烈,江明喜,赵常明,等.三峡库区谷地的植物与植被[M].北京:中国水利水电出版社,2008.
    [117]陈伟烈,张喜群,梁松筠,等.三峡库区的植物与复合农业生态系统[M].北京:科学出版社,1994.
    [118]陈云明,吴钦孝,刘向东.黄土丘陵区油松人工林水热效应的研究[J].水土保持学报,1995,9(4):69~74.
    [119]陈正洪,万素琴,毛以伟.三峡库区复杂地形下的降雨时空分布特点分析[J].长江流域资源与环境,2005,14(5):623~627.
    [120]程冬冰,蔡崇法,彭艳平,等.根据土壤粒径分形估计紫色土水分特征曲线[J].土壤学报,2009,46(1):30~36.
    [121]程根伟,陈桂蓉.贡嘎山暗针叶林区森林蒸散发特征与模拟[J].水科学进展,2003,14(5):617~621.
    [122]程根伟.四川盆地江河径流特征与森林关系的探讨[J]水土保持学报,1991,5(1):48~52.
    [123]程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987,1(5):8~10.
    [124]程金花.长江三峡花岗岩林地坡面优先流模型研究[D].北京林业大学博士论文,2005.
    [125]程先富,史学正,王洪杰.红壤丘陵区耕层土壤颗粒的分形特征[J].地理科学,2003,23(5):617~621.
    [126]丛振涛,雷志栋,杨诗秀.基于SPAC理论的田间腾发量计算模式[J].农业工程学报,2004,20(2):6-9.
    [127]崔鸿侠,张卓文,陈玉生,等.三峡库区莲峡河小流域马尾松水文生态效应[J].中南林学院学报,2005,25(2):46~49.
    [128]代俊峰,陈家宙,崔远来,等.不同林草系统对集水区水量平衡的影响研究[J].水科学进展,2006,17(4):435~443.
    [129]代俊峰.SWAT模型在赣东北红壤丘岗区林草系统水量平衡研究中的应用[D].华中农业大学硕士学位论文,2004.
    [130]单秀枝,魏由庆,严慧峻,等.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报,1998,35(1):1-9.
    [131]邓良基,林正雨,高雪松,等.成都平原土壤颗粒分形特征及应用[J].土壤通报,2008,39(1):38~42.
    [132]杜嘉,张柏,宋开山,等.三江平原主要生态类型耗水分析和水分盈亏状况研究[J].水利学报,2010,41(2):155-163.
    [133]段志华,张钰,张伟,等.评估4种寒区陆面、水文过程模式及在青藏高原的应用前景[J].水文与水工程学报,2012,23(6):43~50.
    [134]樊军,邵明安,王全九.黄土区参考作物蒸散量多种计算方法的比较研究[J].农业工程学报,2008,24(3):98~102.
    [135]樊军,王全九,邵明安.黄土高原水蚀风蚀交错区土壤剖面水分动态的数值模拟研究[J].水科学进展,2007,18(5):683--688.
    [136]方堃,陈效民,张佳宝,等.红壤地区典型农田土壤饱和导水率及其影响因素研究[J].灌溉排水学报,2008,27(4):67~69.
    [137]冯绍元,马英,霍再林,等.非充分灌溉条件下农田水分转化SWAP模拟[J].农业工程学报,2012,28(4):60~68.
    [138]关德新,吴家兵,王安志,等.长白山阔叶洪松林生长季热量平衡变化特征[J].应用生态学报,2004,15(10):1828~1832.
    [139]郭希哲,黄学斌,徐开祥,等.三峡工程库区崩滑地质灾害防治[M].北京:中国水利水电出版社,2005.
    [140]郭忠升.长江防护林体系建设现状与对策[J].世界林业研究,2009,22(1):10~13.
    [141]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报,2003,23(2):251~258.
    [142]胡国杰,赵林,李韧,等.基于CoupModel模型的冻融土壤水热耦合模拟研究[J].地理科学,2013, 33(3):356~362.
    [143]胡克林,李保国,陈研.表层土壤饱和导水率的空间变异对农田水分渗漏的影响[J].水利学报,2006,37(10):1217~1223.
    [144]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490~497.
    [145]吉喜斌,康尔泗,赵文智,等.黑河流域山前绿洲灌溉农田蒸散发模拟研究[J].冰川冻土,2004,26(6):713~719.
    [146]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)—模型开发与验证[J].水利学报,2006,37(5):534~542.
    [147]贾志军,张稳,黄耀.三江平原稻田能量通量研究[J].中国生态农业学报,2010,12(4):496~503.
    [148]蒋先军,李航,谢德体,等.分形理论在土壤肥力研究中的应用与前景[J].土壤,2007,39(5):677~683.
    [149]焦醒,刘广全,匡尚富,等Penman-Monteith模型在森林植被蒸散研究中的应用[J].水利学报,2010,41(2):245~252.
    [150]金栋梁.森林对水文要素的影响[J].人民长江,1989,1(1):28~35.
    [151]金小麒.板桥河小流域防护林体系生态效益研究[J].水土保持学报,2001,15(2):80~83.
    [152]康尔泗,程国栋,宋克超,等.河西走廊黑河山区土壤-植被-大气系统能水平衡模拟研究[J].中国科学D辑-地球科学,2004,34(6):544~551.
    [153]康燕霞,蔡焕杰,王健,等.夏玉米潜热通量的变化规律研究[J].水电能源科学,2009,27(4):164~167.
    [154]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [155]李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263~265.
    [156]李菊,刘允芬,杨晓,等.千烟洲人工林水汽通量特征及其与环境因子的关系[J].生态学报,2006,26(8):2449~2457.
    [157]李麟辉,张一平,谭正洪,等.哀牢山亚热带常绿阔叶林与林外草地太阳辐射比较[J].生态学杂志,2011,30(7):1435~1440.
    [158]李凌浩,林鹏,王其兵,等.武夷山甜槠林水文学效应的研究[J].植物生态学报,1997,21(5):393-402.
    [159]李宁,徐武兵,赖江山,等.亚热带常绿阔叶林8个常见树种粗根生物量[J].科学通报,2013,58(4):329~335.
    [160]李荣昌,屠六邦.关于森林对河川年流量的影响及其意义[J].南京林产化工学院学报,1983,1(3):31~43.
    [161]李世东,陈应发.论长江中游防护林体系建设(1)[J].防护林科技,1999,40(9):25~34.
    [162]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398~406.
    [163]李玉麟,催建垣,张铜会.奈曼沙地春小麦蒸散量及其分析[J].中国沙漠,2000,24(10):1245~1249.
    [164]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427~432.
    [165]梁士楚,王伯荪.广西英罗港红树林区木榄群落土壤粒径分布的分形特征[J].热带海洋学报,2003,22(1):17~22.
    [166]梁向峰,赵世伟,张扬,等.子午岭植被恢复对土壤饱和导水率的影响[J].生态学报,2009,29(2):636~642.
    [167]廖凯华,徐绍辉,程桂福.大沽河流域土壤饱和导水率空间变异特征[J].土壤,2009,41(1):147~151.
    [168]林正雨.川中丘陵区土壤颗粒分形维数特征及影响因素研究[D].成都:四川农业大学,2008.
    [169]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-259.
    [170]刘晨峰,张志强,孙阁,等.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应[J].植物生态学报,2009,33(4):706~718.
    [171]刘晨峰.北京地区杨树人工林能量和水量平衡研究[D].北京林业大学博士论文,2007.
    [172]刘刚,谢云,高晓飞,等ALMANAC作物模型参数的敏感性分析[J].中国农业气象,2008,29(3):259~263.
    [173]刘国花,谢吉荣.重庆四面山风景区森林植被调查研究[J].渝西学院学报(自然科学版).2005,4(1):90~92.
    [174]刘建立,徐邵辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,35(2):68~76.
    [175]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报,2002,22(2):197~205.
    [176]刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451-456.
    [177]刘允芬,李家永,陈永瑞,等.红壤丘陵区森林植被恢复的增湿效应初探[J].自然资源学报,2001,16(5):451~467.
    [178]吕殿青,邵明安,刘春平.容重对土壤饱和水分运动参数的影响[J].水土保持学报,2006,20(3):154~157.
    [179]马欢,杨大文,雷慧闽,等.Hydrus-1D模型在田间水循环规律分析中的应用及改进[J].农业工程学报,2011,27(3):6-12.
    [180]马履一,翟明普,王勇.京西山地棕壤和淋溶褐土饱和导水率的分析[J].林业科学,1999,35(3):109~112.
    [181]马宁,王乃昂,王鹏龙,等.黑河流域参考蒸散量的时空变化特征及影响因素的定量分析[J].自然资源学报,2012,27(6):975~989.
    [182]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [183]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J]林业科学,1987,23(3):253~265.
    [184]米娜,于贵瑞,温学发,等.漓我国中亚热带人工林水热通量对干旱差异响应的模拟[J].生态环境学报,2011,20(8-9):1196~1203.
    [185]缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,18(9):1987~1993.
    [186]潘迪,毕华兴,次仁曲西,等.晋西黄土区典型森林植被耗水规律与环境因子关系研究[J].北京林业大学学报,2013,35(4):16~20.
    [187]潘颜霞,王新平,苏延桂,等.荒漠人工固沙植被区土壤水分的时空变异性[J].生态学报,2009,29(2):993~1000.
    [188]彭舜磊,由文辉,沈会涛.植被群落演替对土壤饱和导水率的影响[J].农业工程学报,2010b,26(11):79~84.
    [189]彭舜磊,由文辉.天童亚热带常绿阔叶林降雨再分配的数量特征[J].中国科技论文在线,2010a,5(5):387~392.
    [190]秦钟,于强,许守华,等.华北平原农田水热通量与作物水分利用效率的特征与模拟[J].中国科学D辑-地球科学,2004,34(S2):183~192.
    [191]佘冬立,邵明安,俞双恩,等.黄土高原典型植被覆盖下SPAC系统水量平衡模拟[J].农业机械学报,2011,42(5):73~78.
    [192]石辉,王峰,李秧秧.黄土丘陵区人工油松林地土壤大孔隙定量研究[J].中国生态农业学报,2007, 15(1):28~32.
    [193]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481~487.
    [194]司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450~459.
    [195]宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76~79.
    [196]苏宏新,桑卫国.宏观植物生态模型的研究现状与展望[J].植物生态学报,2002,26(S1):98~106.
    [197]苏里坦.绿洲-荒漠交错带水热传输模拟研究[D].河海大学博士论文,2004.
    [198]孙迪,夏静芳,关德新,等.长白山阔叶红松林不同深度土壤水分特征曲线[J].应用生态学报,2010,21(6):1405~1409.
    [199]孙丽,宋长春.三江平原典型沼泽湿地能量平衡和蒸散发研究[J].水科学进展,2008,19(1):43~48.
    [200]孙睿,刘昌明.地表水热通量研究进展[J].应用生态学报,2003,14(3):434-438.
    [201]孙向阳,王根绪,李伟,等.贡嘎山亚高山演替林林冠截留特征与模拟[J].水科学进展,2011,22(1):23~29.
    [202]谭丽慧,缪韧,王兴,等SVAT模型的组成及其耦合方法研究[J].水利科技与经济,2013,19(2):14-16.
    [203]唐常源.亚热带马尾松人工林的降雨截留作用[J].地理学报,1992,47(6):545~551.
    [204]唐坤银,唐代生.杉木生物量优化模型研究[J].林业调查规划,2010,35(1):47~52.
    [205]同延安.土壤-植物-大气连续体系中水运移理论与方法[M].西安:陕西科学技术出版社,1998.
    [206]万师强,陈灵芝.暖温带落叶阔叶林冠层对降水的分配作用[J].植物生态学报,1999,23(6):57-561.
    [207]汪集友.径流与森林生态[J].福建水土保持,2001,13(2):56~60.
    [208]王纯枝,宇振荣,毛留喜,等.基于能量平衡的华北平原农田蒸散量的估算[J].中国农业气象,2008,29(1):42~46.
    [209]王国梁,刘国彬,党小虎.黄土丘陵区不同土地利用方式对土壤含水率的影响[J].农业工程学报,2009,25(2):31-35.
    [210]王海燕,张洪江,杨平,等.不同水土保持林地土壤有机碳研究[J].长江流域资源与环境,2010,19(5):535~539.
    [211]王洪涛.多孔介质污染物迁移动力学[M].北京:高等教育出版社,2008.
    [212]王力,王全九,卫三平.基于CoupModel的黄土丘陵沟壑区荒草地水分平衡模拟[J].农业机械学报,2013,44(5):79-88.
    [213]王力,卫三平,王全九.黄土丘陵区燕沟流域农林草地土壤水库充失水过程模拟[J].林业科学,2011,47(1):29-35.
    [214]王力,卫三平,吴发启.黄土丘陵沟壑区土壤水分环境及植被生长响应——以燕沟流域为例[J].生态学报,2009,29(3):1543-1553.
    [215]王伟,张洪江,李猛,等.重庆市四面山林地土壤水分入渗特性研究与评价[J].水土保持学报,2008,22(4):95-99.
    [216]王伟.三峡库区紫色砂岩林地土壤优先流特征及其形成机理[D].北京林业大学博士论文,2011.
    [217]王贤,张洪江,程金花,等.基于CoupModel模型的三峡库区典型林地土壤水分和温度模拟以及参数敏感性分析[J].水土保持通报,2013,33(6):295-302.
    [218]王贤,张洪江,程金花,等.基于CoupModel的三峡库区典型林地水量平衡模拟[J].农业机械学报,2014,45(6):140-149,160.
    [219]王贤,张洪江,程金花,等.重庆四面山典型林分土壤饱和导水率研究[J].水土保持通报,2012,32(2):29-34.
    [220]王贤,张洪江,程金花,等.重庆四面山几种林地土壤颗粒分形特征及其影响因素[J].水土保持学报,2011,25(3):154-159.
    [221]王晓燕,陈洪松,王克林,等.红壤坡地土壤水分时间序列分析[J].应用生态学报,2007,18(2):287-302.
    [222]王修信,王培娟,朱启疆.漓江上游山区复杂地形水热通量的时空变化规律[J].农业工程学报,2012,28(3):118-122.
    [223]王绪,尹光彩,周国逸,等.鼎湖山针阔混交林旱季能量平衡研究[J].热带亚热带植物学报,2005,13(3):205-214.
    [224]王延平,邵明安,张兴昌.陕北黄土区陡坡地人工植被的土壤水分生态环境[J].生态学报,2008,28(8):3769-3778.
    [225]王幼奇,樊军,邵明安,等.黄土高原水蚀风蚀交错区三种植被蒸散特征[J].生态学报,2009,29(10):5386-5394.
    [226]卫三平.黄土丘陵区土壤—植被—大气系统水能传输模拟研究[D].西北农林科技大学博士论文,2008.
    [227]魏焕奇,何洪林,刘敏,等.基于遥感的千烟洲人工林蒸散及其组分模拟研究[J].自然资源学报,2012,27(5):778-789.
    [228]魏天兴,朱金兆,张学培.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40.
    [229]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289-298.
    [230]吴海龙,余新晓,张艳,等.林带外缘草地水热通量动态变化及其对环境因子的响应[J].干旱区资源与环境,2014,28(1):19-25.
    [231]吴家兵,关德新,张弥,等.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例[J].生态学杂志,2005,24(10):1245-1249.
    [232]吴力立,董家文.城市次生栎林的热量收支[J].南京林业大学学报(自然科学版),2002,26(2):1-3.
    [233]肖文发,黄志霖,唐万鹏,等.长江三峡库区退耕还林工程生态效益监测与评价[M].北京:科学出版社,2012.
    [234]肖文发,雷静品.三峡库区森林植被恢复与可持续经营研究[J].长江流域资源与环境,2004,13(2):138-144.
    [235]肖文发,李建文,于长青.长江三峡库区陆生动植物生态[M].重庆:西南师范大学出版社,2000.
    [236]徐琪.三峡库区移民环境容量研究[M].北京:科学出版社,1993.
    [237]徐旭,黄冠华,屈忠义,等.区域尺度农田水盐动态模拟模型——GSWAP[J]农业工程学报,2011,27(7):58--63.
    [238]许中旗,王立军,刘文忠,等.森林植被影响气候变化的机制[J].河北林果研究,2005,20(1):7-13.
    [239]闫俊华.森林水文学研究进展[J].热带亚热带植物学报,1999,7(4):347-356.
    [240]闫人华,熊黑钢,张芳.夏秋季绿洲-荒漠过渡带芨芨草地蒸散及能量平衡特征研究[J].中国沙漠,2013,33(1):]33-140.
    [241]颜廷武,邢兆凯,尤文忠,等.辽宁冰砬山长白落叶松林能量平衡和蒸散的研究[J].沈阳农业大学学报,2009,40(4):449-452.
    [242]阳勇,陈仁升,吉喜斌,等.黑河高山草甸冻土带水热传输过程[J].水科学进展,2010,21(1):30-35.
    [243]杨大文,雷慧闽,丛振涛.流域水文过程与植被相互作用研究现状评述[J].水利学报,2010,41(10): 1142-1149.
    [244]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流[J].林业科学研究,1992,5(2):158-162.
    [245]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [246]杨永辉,渡边正孝,王智平,等.气候变化对太行山土壤水分及植被的影响[J].地理学报,2004,59(1):56~63.
    [247]尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究[J].热带亚热带植物学报,2004,12(3):195-201.
    [248]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究[J].生态学报,1996,16(3):238-245.
    [249]余新晓,岳永杰,王小平,等.森林生态系统结构及空间格局[M].北京:科学出版社,2010.
    [250]张尔辉.重庆四面山大型真菌调查研究初报[J].重庆师范大学学报(自然科学版).1989,6(1):45-51.
    [251]张洪江,程金花,王伟,等译.土壤—植物—大气系统热量、物质运移综合模型理论与实践[M].北京:科学出版社,2010.
    [252]张洪江,杜仕才,程云,等.重庆四面山森林植物群落及其土壤保持与水文生态功能[M].北京:科学出版社,2010.
    [253]张均华,刘建立,张佳宝.作物模型研究进展[J].土壤,2012,44(1):1-9.
    [254]张淑兰,于澎涛,王彦辉,等.泾河上游流域实际蒸散量及其各组分的估算[J].地理学报,2011,66(3):385-395.
    [255]张伟,王根绪,周剑,等.基于CoupModel的青藏高原土多年冻土区土壤水热过程模拟[J].冰川冻土,2012,34(5):1099-1109.
    [256]张小由,康尔泗,司建华,等.额济纳绿洲柽柳灌丛辐射特征与热量平衡研究[J].干旱区资源与环境,2007,21(4):142-145.
    [257]张燕.北京地区杨树人工林能量平衡和水量平衡[D].北京林业大学博士论文,2010.
    [258]张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与C02通量的测定[J].地理学报,2002,57(3):333-343.
    [259]张远东,刘世荣,顾峰雪.西南亚高山森林植被变化对流域产水量的影响[J].生态学报,2011,31(24):7601-7608.
    [260]张展羽,苏里坦,张国华.绿洲-荒漠交错带潜水-土壤-植被-大气连续体水热传输模型研究[J].北京林业大学学报,2006,28(6):88-92.
    [261]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志,2002,21(6):20-23.
    [262]赵军,孟凯.数学模型模拟方法分析土壤水分变化过程[J].土壤通报,2002,33(5):324-328.
    [263]赵来,吕成文.土壤分形特征与土壤肥力关系研究——以皖南地区水稻土为例[J].土壤肥料,2005,41(6):7-11.
    [264]赵勇钢,赵世伟,华娟,等.半干旱典型草原区封育草地土壤结构特征研究[J].草地学报,2009,17(1):106-112.
    [265]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56.
    [266]中国科学院南京土壤所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [267]周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报,1995,19(3):201- 207.
    [268]周国逸,余作岳,彭少麟.小良试验站三种生态系统能量平衡的研究[J].热带亚热带植物学报,1999,7(2):93-101.
    [269]周剑,王根绪,李新,等.高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J].冰川冻土,2008,30(3):398-408.
    [270]周先容,陈劲松.川西亚高山针叶林土壤颗粒的分形特征[J].生态学杂志,2006,25(8):891-894.
    [271]朱安宁,张佳宝,陈德立.土壤饱和导水率的田间测定[J].土壤,2000(4):215-218.
    [272]朱燕,陈代松,张诚,等.四川地区马尾松胸径与立木树干鲜重模型研究[J].四川林勘设计,2011,32(2):26-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700