用户名: 密码: 验证码:
鸭瘟强、弱毒株在感染鸭体内的动态分布及免疫应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭瘟(Duck plague,DP)是由疱疹病毒科中的鸭瘟病毒(Duck plague virus,DPV)引起的常见于鸭、鹅、天鹅等水禽的一种高度致死性传染病。该病在世界各养鸭地区都有分布,其预防和控制对于水禽养殖业的发展具有重要意义。临床和实验室证实DPV弱毒疫苗是预防和控制该病的有效生物制剂,往往在免疫鸭后几小时就对机体产生一定程度保护力。现有关于DPV弱毒疫苗免疫发生机理的研究资料主要集中于系统免疫与免疫保护力的关系,忽略了特异性黏膜免疫在抵抗DPV强毒感染中的作用,难以全面揭示DPV弱毒疫苗免疫保护机理。而黏膜免疫系统(Mucosal immunesystem,MIS)是除了经典的细胞免疫与体液免疫外,存在于机体的另一种高度完整和调节完善的免疫系统。目前禽类MIS的研究较为缓慢,且大部分集中于鸡的黏膜免疫研究。为了全面系统了解鸭体内MIS的诱导机制,本研究将DPV弱毒疫苗经皮下注射、口服和滴鼻三种途径免疫20日龄鸭并在各组设立同居未免疫鸭后,对疫苗抗原在机体内的分布和增殖规律、免疫鸭呼吸道和消化道等局部黏膜的细胞和体液免疫发生规律进行了系统的研究:同时为了解机体MIS对强毒感染的应答机制,本研究还对不同途径感染DPV强毒鸭进行了以上各方面研究。本研究同时应用ERIC-PCR技术对不同途径免疫DPV弱毒鸭肠道菌群结构的多样性和动态变化进行了研究和分析,获得以下系列结果:
     1.应用TaqMan-MGB探针实时荧光定量PCR方法对DPV强、弱毒在感染鸭体内的定量检测分析表明:不同途径免疫DPV弱毒疫苗均可在免疫后第12小时分布于鸭呼吸道、消化道和各免疫器官中并快速增殖,而DPV分布到各组织器官的顺序与免疫途径有密切关系:强毒力和弱毒力的DPV均对鸭免疫器官和肠道具有较强噬性。免疫鸭体内DPV弱毒含量于免疫后第24小时达到最高值后缓慢下降,提示DPV弱毒苗诱导的机体系统免疫和黏膜免疫抑制了鸭体内病毒的增殖。至免疫后第60天依然可在大部分免疫器官中检出低拷贝数DNA的DPV弱毒对持续诱导鸭免疫系统长时间产生特异性免疫力具有重要意义。各组同居未免疫鸭体内均可检出DPV弱毒,表明人工免疫鸭排出的DPV弱毒可感染同居鸭,这对加强机体免疫、诱导以非黏膜免疫途径(皮下免疫)免疫鸭产生黏膜免疫反应具有重要意义。不同途径感染DPV强毒鸭体内病毒含量迅速增加直至感染鸭死亡或耐过。
     2.应用间接ELISA方法对实验鸭血液、胆汁、呼吸道和消化道分泌液中的DPV特异性SIgA、IgG和IgM抗体消长规律进行检测的结果表明:SIgA是DPV弱毒苗诱导鸭MIS中抗病原微生物感染的主要体液免疫因子,IgM在所有受检体液中检出时间最早,IgG是系统免疫的主要体液免疫因子。不同途径免疫鸭除可在局部黏膜分泌液产生高滴度的特异性SIgA、IgM和IgG抗体外,还可在黏膜远端产生特异性抗体,表明不同途径免疫DPV弱毒苗可同时诱导鸭MIS和共同黏膜免疫系统(Common mucosalimmune system,CMIS);而DPV弱毒最早到达的黏膜位点处的特异性抗体检出时间最早、抗体滴度最高。免疫后第60天依然可在弱毒免疫鸭大部分受检样品中检出不同滴度水平的特异性抗体,其中尤以肠道分泌液中的特异性SIgA和血液中的IgG抗体水平最高。不同途径感染DPV强毒鸭体内未检出或只检出较低滴度特异性抗体,表明包括消化道和呼吸道黏膜在内的鸭各组织样品的病理损伤直接影响机体特异性抗体的生成。
     3.应用间接免疫过氧化物酶组织化学染色法对实验鸭消化道、呼吸道和主要免疫器官组织石蜡切片中IgA~+细胞变化规律进行检测的结果显示:所有弱毒免疫鸭及其同居未免疫鸭各受检组织器官中IgA~+细胞数量与对照鸭相比均有不同程度的增加,且最早检出DPV弱毒苗的组织局部黏膜中IgA~+细胞数量最多。提示不同途径免疫DPV弱毒苗均可诱导鸭体内IgA~+细胞增殖,而免疫途径的选择对诱导鸭局部黏膜效应位点中IgA~+细胞的增殖至关重要。免疫鸭肠道黏膜固有层中IgA~+细胞数量为所有检测组织部位中最多,其中尤以十二指肠黏膜固有层中最为明显,表明鸭肠道黏膜固有层是鸭MIS最主要的效应位点。所有免疫鸭及其同居鸭体内IgA~+细胞数量增殖的动态变化与SIgA抗体滴度的变化规律相符,表明免疫鸭局部黏膜效应位点中IgA~+细胞的增殖规律与特异性SIgA抗体滴度密切联系。不同途径感染DPV强毒鸭体内IgA~+胞数量随着机体各黏膜组织部位病理损伤程度的加剧而迅速减少或出现轻微增加后再急剧减少。表面鸭体各组织器官,尤其是各黏膜组织部位的病理损伤直接影响IgA~+细胞的生成及增殖。
     4.应用双抗原顺序间接免疫过氧化物酶法对实验鸭消化道、呼吸道和主要免疫器官组织石蜡切片中DPV~+和CD3~+细胞变化规律进行检测的结果显示:DPV~+最早可于接种后第1-3天在弱毒免疫鸭或强毒感染鸭体内检出,且不同毒力DPV均对各组织器官的上皮细胞和淋巴细胞具有较强噬性。所有弱毒免疫鸭及其同居未免疫鸭各受检器官中CD3~+细胞数量均于免疫后第3-6天较对照鸭开始增加并于第15-21天达到数量峰值,其中口服免疫鸭体内CD3~+细胞数量开始增加的时间最早,细胞数量最多。表明不同途径免疫DPV弱毒均可诱导鸭体内CD3~+细胞增殖,而局部黏膜中DPV弱毒最早检出的时间和增殖的速度决定该处黏膜免疫诱导位点和效应位点中CD3~+细胞的水平。CD3~+细胞主要聚居于肠道尤其是十二指肠黏膜固有层中,在气管黏膜固有层及免疫器官淋巴小节等部位也可见较多CD3~+细胞。表明鸭局部黏膜固有层是机体MIS最大的效应位点;而肠道在诱导鸭黏膜免疫反应中具有重要作用。不同途径感染DPV强毒鸭体内各组织器官中CD3~+细胞数量则随着机体各黏膜组织部位病理损伤程度的加剧而急剧减少或略微增加后再剧烈减少。
     5.应用ERIC-PCR方法对DPV弱毒免疫鸭各肠段中菌群结构多样性和动态变化进行检测的结果表明:健康正常鸭十二指肠、空肠和回肠中菌群结构较盲肠和直肠能够更早形成平衡稳定的微生态体系,而不同途径免疫DPV弱毒疫苗均对鸭肠道中菌群结构产生不同程度的影响。不同途径免疫鸭十二指肠中菌群结构较其它肠段可更快与肠黏膜表面的DPV抗原和SIgA形成新的、平衡稳定的共存关系。免疫鸭肠道内菌群ERIC-PCR扩增优势条带比对结果均为动物肠道内的正常菌,其中大肠杆菌、欧文氏菌、芽孢杆菌等需氧或兼性厌氧菌广泛分布于鸭体整个肠道组织中;乳酸杆菌、肠球菌等厌氧或兼性厌氧菌主要分布于肠道后段,特别是盲肠内。
Duck plague (DP) is an acute, contagious herpesvirus infection of ducks, geese and swans with high morbidity and mortality. In duck-producing areas of the world where the disease has been reported, DP has produced significant economic losses in domestic and wild waterfowl. Vaccination has been used as a preventive measure and also for controlling disease outbreaks. Attenuated DPV vaccine has been developed and used extensively with good success in the world, as it provides protection immediately after vaccination. A number of studies have shown the importance of the systemic immune responses in the resistance and clearance of DPV infection. However, the mucosal immune responses against DPV infection remain to be unknown, which will hind the elucidation of the immune mechanism of attenuated DPV vaccine. The mucosal immune system is known to provide an effective barrier between the host and various pathogens that is regulated in a different fashion to that of systemic immunity. The study on the mucosal immune system of fowl will provides valuable insight into the controlling of disease and development of mucosal vaccine. However, There are only a little studies focus on the mucosal immune system of chickens. To understand better the mucosal immune responses of ducks, The 20-day-old ducklings were vaccinated by subcutaneous, oral, and nasal administration with attenuated DPV vaccine, quantitative analysis of vaccine virus and humoral and cell-mediate mucosal immune response in birds were estimated. Above detection on infected ducklings with virulent DPV was also estimated in this study, in order to evaluate the mucosal immune response against DPV infection. The effect of vaccination on the intestinal microbial community structure feature was also estimated using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR, and the contents are summarized as follws:
     1.Replication kinetics of DPV loads in ducklings were examined by using real-time quantitative PCR. The results indicated that vaccine virus can spread to all tested samples and replicated quickly at 12 hours postinoculation (p.i.), and the route of vaccine administration had significant effect on the sequential tissue distribution of duck plague virus in ducklings, and the lymphoid organs and intestine tissues are the primary tissue sites of DPV replication independent of the different virulence of virus. The vaccine virus levels reached peak at 24 hours p.i. followed by a stead decline, which manifest that the stimulation of host immune response may suppress the virus replication. A low-level of DPV vaccine persistence in lymphoid organs at the terminal of experiment will contributed to long-term immune protection. Live DPV vaccine were detected from direct-contact ducklings, which may bring about contact immunization and strengthen host mucosal immune response to ducklings vaccinated by systemic administration. The virus loads in infected ducklings with virulent DPV increased untill the birds died or agonal as a result of infection.
     2.The mucosal and systemic humoral immune responses in blood, bile, and the respiratory and digestive tract fluids of ducklings were evaluated using indirect enzyme linked immunosorbent assay (ELISA). The results showed that sIgA immunoglobulin is the predominant antibody in mucosal immune system stimulated by attenuated DPV vaccine, while IgM immunoglobulin was first detected in all samples examined, and IgG immunoglobulin is the most important antibody in systemic immunity. The exposure of the mucosa to live DPV vaccine can lead to specific antibody production in the local as well as distant mucosal surface, which suggest that DPV vaccine by mucosal administration can induce both MIS and CMIS. The speed and loads of virus vaccine exposure to mucosa have a close correlation with the induction of local mucosal humoral immunity. Specific antibody can be detected in tested samples of vaccinated ducklings at 60 days p.i., particularly the high antibody titer of IgG in blood and sIgA in intestinal fluids. Little or a little antibody were detected in infected ducklings with virulent DPV, which indicated that the pathological lesions of intestinal mucous membrane can suppress the effective stimulation of host mucosal immune response.
     3.Immunohistochemical localization of IgA producing-cells in respiratory and digestive tract, and lymphoid organs of ducklings were detected using indirect immunoperoxidase staining methods. The results showed that the numbers of IgA-producing cells increased by various rates in all samples examined of vaccinated ducklings, and the numbers of IgA-producing cells originated from a local mucosal membrane that exposure to DPV vaccine early were the most. These results may indicated that attenuated DPV vaccine can induce the increase of the numbers of IgA producing-cells in ducklings, and the choice of immune routes is critical for the stimulation and proliferation of IgA-producing cells. The numbers of IgA-producing cells in lamina propria of intestine, particularly in duodenum, were higher than that in orther tissues and organs. This results suggesting that the lamina propria of intestine is the predominant efective sites of mucosal immune response of duck. The replication kinetics of IgA-producing cells in vaccinated or direct-contact vaccinated ducklings were corresponds to the kinetics of specific sIgA antibody, suggesting the stimulation and proliferation of IgA-producing cells have a close corelation with the induction of specific sIgA antibody. The numbers of IgA-producing cells in infected ducklings with virulent DPV decreased or slightly increased followed by a drastic decrease with the progression of the infection. This results may indicated that the pathological lesions of organs, particularly intestinal mucous membrane, have significant effect on the stimulation and proliferation of IgA-producing cells.
     4. Immunohistochemical localization and proliferation of DPV antigen and CD3~+ cells in respiratory and digestive tract, and lymphoid organs of ducklings were detected using indirect immunoperoxidase staining methods. The results showed that the DPV antigen was first detected in infected or vaccinated ducklings at 1 to 3 days p.i., and the target cells for DPV are epithelial and lymphoid cells independent of the different virulence of virus. The numbers of CD3~+ cells in all samples examined of artifically or direct-contact vaccinated ducklings increased by various rates at 3 to 6 days p.i. and reached maximum at 15 to 21 days p.i. The numbers of CD3~+ cells in orally vaccinated birds increased early and peak loads of cell numbers were higher compared with that in orther vaccinated ducklings, suggesting that the speed and loads of attenuated DPV vaccine exposure to local mucous membrane have significant effect on the CD3~+cells level. The CD3~+ cells were found predominantly in lamina propria of intestine, and many CD3~+ cells were also found in the lamina propria of trachea and lymphoid nodes of lymphoid organs. The results suggested that the lamina propria of mucosa is the most important effective site of CD3~+ cells, and intestine may play critical role in induction of mucosal immune system of duck. The numbers of CD3~+ cells in infected ducklings with virulent DPV decreased or slightly increased followed by a drastic decrease with the progression of the infection.
     5. The structural dynamics of intestinal microbial communities of vaccinated ducklings have been monitored using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. The results showed that the steady pattern of microbial structural within duodenum, jejunum, and ileum of controlled healthy ducklings formed relatively early than that within cecum and rectum. The vaccine virus inoculated by systemic and mucosal administration has significant effect on the intestinal microbial community structure by various degree. The results also showed that the microflora in duodenum can formed new steady structure quickly with DPV antigen, and sIgA antibody after vaccination. The results of sequence analysis of DNA fragments in PCR amplified bands showed all bacterial in intestine of controlled and vaccinated birds were normal intestinal microflor, and aerobe or facultative aerobe, including Escherichia, Erwinia, and Bacillus became predonderant bacilli in all parts of intestine. However, the anaerobe or facultative anaerobe, including Lactobacillus and Enterococcus became predonderant bacilli in cecum or ileum.
引文
[1]Sandhu T S,Shawky S A.Duck virus enteritis(duck plague).In:Saif Y M,Barnes H J,Glisson,J R,et al.11th ed.Diseases of Poultry[M].Ames:Iowa State University Press.2003,354-363.
    [2]殷震,刘景华主编.动物病毒学[M].第2版.北京:科学出版社出版.1997,456,990,1073-1079.
    [3]Baudet A E R F.Mortality in ducks in the Netherlands caused by a filtrable virus:fowl plague[J].Tijdschr Diergeneeskd.1923,50:455-459.
    [4]廖德惠,张敏,张化贤,等.四川麻鸭鸭瘟的调查研究[J].四川农学院学报.1983,1:99-108.
    [5]程安春.我国目前禽病流行动态和防治对策(上).中国禽业导刊[J].2000,17(19):8-9.
    [6]程安春,汪铭书.最新鸭病诊断和防治[M].四川大学出版社.1995,120-129.
    [7]曹频英.雏鹅暴发鸭瘟病例诊治[J].广西农业科学.1998,6:316-317.
    [8]蔡明法,周承永,胡仕福,等.鸭瘟流行的新特征和防治对策[J].浙江畜牧兽医.2000,3:24.
    [9]Hess W R & Dardiri A H.Some properties of the virus of duck plague[J].Arch Gesamte Virusforsch.1968,24:148-153.
    [10]Jansen J.Duck plague[J].J Am Vet Med Assoc.1968,152:1009-1016.
    [11]Spieker J O.Virulence assay and other studies of six North American strains of duck plague virus tested in wild and domestic waterfoel[J].PhD Diss.Univ Wisconsin,Madison.1977.
    [12]Bos A.Some new cases of duck plague[J].Tijdschr Diergeneeskd.1942,69:372-381.
    [13]Jansen J & Kunst.Is duck plague related to Newcastle disease or to fowl plague[J]?Proc 14th Int Vet Congr.1949,2:363-365.
    [14]Dardiri A H,& Hess W R.A plague assay for duck plague virus[J].Can J Comp Med Vet Sci.1968,33:505-510.
    [15]Levine P P & Fabricant J.A hiithertoundescribed virus disease of ducks in North America[J].Comell Vet.1950,40:71-86.
    [16]Roizman B,Carmicheal L E,Deinhardt G F,et al.Herpesviridae:Definition,provisional nomenclature,and taxonomy[J].Intervirology.1981,16:201-217.
    [17]程安春,汪铭书,汪开毓,等.现代禽病诊断和防治全书[M].四川大学出版社.1997,295.
    [18]王红宁,夏定友,廖德惠,等.应用酶联免疫吸附试验检测鸭瘟病毒的实验研究[J].四川农业大学学报.1987,5(1):49-54.
    [19]洪峰,黄引贤.用微量免疫扩散试验检测小鹅瘟和鸭瘟的研究[J].中国畜禽传染病.1989,47(4):15-17,43.
    [20]邓明义,Burgess E C,Yuill T M.用反向被动血凝试验检测鸭瘟病毒[J].中国兽医杂志.1989,15(1):43-46.
    [21]徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病.1992,4:30-31.
    [22]徐耀基,黄引贤.应用微量固相放射免疫测定法检测鸭瘟病毒的初步研究[J].中国畜禽传染病.1992,64(3):35-38,58.
    [23]徐耀基,黄引贤.Dot-ELISA检测鸭瘟病毒的研究[J].中国畜禽传染病.1992,63(2):19-21.
    [24]Islam M R,Nessa J & Halder K M.Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J].Avian Pathol.1993,22:389-393.
    [25]贺东生,赵善昌.光敏生物素标记鸭瘟病毒核酸探针的制备及应用的研究[J].广西农业大学学报.1993,12(3):69-74.
    [26]Plummer P J,ABTim Alefantis,ACSteven Kaplan,et al.Detection of Duck Enteritis Virus by Polymerase Chain Reaction[J].Avian Dis.1998,42:554-564.
    [27]Wallace R H,Susan E B,Sean W N,et al.Identification of Duck Plague Virus by Polymerase Chain Reaction[J].Avian Dis.1999,43:106-115.
    [28]Pritchard L I,Morrissy C,Phuc K V,et al.Development of a polymerase chain reaction to detect Vietnamese isolates of duck virus enteritis[J].Vet Microbio.1999,68:149-156.
    [29]谢芝勋,谢志勤,刘加波,等.用聚合酶链反应检测鸭瘟病毒的研究[J].中国兽药杂志.2000,34(4):10-12.
    [30]郭霄峰,廖明,严英华,等.利用PCR检测鸭瘟病毒[J].中国兽医科技.2002,32(4):13-16.
    [31]Yang F L,Jia W X,Yue H,et al.Development of Quantitative Real-Time Polymerase Chain Reaction for Duck Enteritis Virus DNA[J].Avian Dis.2005,49:397-400.
    [32]Proctor S J.Pathogenesis of digestive tract lesions in duck plague[J].Vet Pathol.1975,12:349-361.
    [33]Proctor S J.Pathogenesis of duck plague in the bursa of Fabrieius,thymus and spleen[J].J.Ame Vet Res.1976,37:427-431.
    [34]Islam M R & Khan M A H N A.An immunocytochemical study on the sequential tissue distribution of duck plague virus[J].Avian Pathol.1995,24:189-194.
    [35]Samia S.Target cells for duck enteritis virus in lymphoid organs[J].Avian Pathol.2000,29:609-616.
    [36]Shawky S,Schat K A.Latency sites and reactivation of duck enteritis virus[J].Avian Dis.2002,46(2):308-313.
    [37]杨晓燕,罗薇,齐雪峰.应用PCR检测成年鸭体内鸭瘟强毒的分布[J].中国兽医科技.2004,34(01):66-70.
    [38]Yuan G P,Cheng A C,Wang M S,et al.Electron microscopic studies of the morphogenesis of duck enteritis virus[J].Avian Dis.2005,49(1):50-55.
    [39]程安春,汪铭书,刘菲,等.鸭瘟病毒弱毒株在免疫雏鸭体内的分布和排毒规律[J].中国兽医学报.2005'25(3):231-233,258.
    [40]程安春,汪铭书,刘菲,等.PCR在鸭瘟临床诊断和免疫及致病机理研究中的初步应用[J].病毒学报.2004,20(4):364-370.
    [41]胡薛英,谷长英,程国富,等.应用单克隆抗体的免疫组织化学法研究雏鸭体内鸭瘟病毒的分布[J].中国预防兽医学报.2006,28(3):320-322.
    [42]Heid C A,Stevens J,Livak K J,et al.Real time quantitative PCR[J].Gen Res.1996,6(10):986-994.
    [43]朱水芳.实时荧光聚合酶链反应(PCR)检测技术[M].北京:中国计量出版社,2003.
    [44]杨晓燕,程安春,汪铭书,等.基于TaqMan-MGB探针实时荧光定量PCR对DPV 强毒不同途径感染鸭实质器官增殖分布规律研究[J].中国兽医学报.2008,28:223-226.
    [45]Leibovitz L.Gross and histopathological changes of duck plague(duck virus enteritis)[J].J Ame Vet Res.1971,32:275-290.
    [46]Sandhu T & Shawky S.Immunosuppressive effect of an atypical duck enteritis virus infection in white Pekin ducklings.Proceedings of the 135th of American Veterinary Medical Association Conference(p.194)[M].1998.Baltimore,MD,USA.
    [47]齐雪峰,罗薇,杨晓燕,等.鸭瘟病理组织学动态观察[J].中国预防兽医学报.2006,28(1):44-47.
    [48]Glavits R,Ratz F,Saghy E,et al.Pathological and immunological of goose embryos experimentally infected with duck plague virus[J].Aeta Vet Hung.1990,38(1-2):33-34.
    [49]Shawky S,Tirath S,Shivaprasad H L,et al.Pathogenieity of a Low-Virulence Duck Virus Enteritis Isolate with Apparent Immunosuppressive Ability[J].Avian Dis.2000,44:590-599.
    [50]Campagnolo E R,Banerjee M,Panigrahy B,et al.An outbreak of duck viral enteritis(duck plague)in domestic Muscovy dueks(Cairina moschata domestieus)in lllinois[J].Avian Dis.2001,45(2):522-525.
    [51]Butterfield W K & Dardiri A H.Serologie and immunologic response of ducks to inactivated and attenuated duck plague virus[J].Avian Dis.1969,13:876-887,
    [52]Sandhu T S,Shawky S A.Duck virus enteritis(duck plague).In:Saif Y M,Barnes H J,Glisson,J R,et al.11th ed.Diseases of Poultry[M].Ames:Iowa State University Press, 2003.354-363.
    [53]程安春,汪铭书,崔恒敏,等.鸭瘟鸭病毒性肝炎二联弱毒疫苗的研究Ⅳ.二联疫苗对雏鸭早期最佳免疫途径的研究[J].四川农业大学学报.1997,15(2):263-269,295.
    [54]范存军,谭诗文.鸭瘟弱毒苗对雏鸭的饮水免疫试验[J].中国畜禽传染病.1996,1:13.
    [55]Jansen J S,Kurst H,Wemmenhove R,et al.The active immunization of duck plague[J].Tijdschr Diergeneskd.1963,88:927-932.
    [56]Jansen J S.The interference phenomenon in the development of resistance against duck plague[J].Comp Pathol.1964,74:3-7.
    [57]Toth T E.Aetive immunization of white pekin duck against duck viral enteritis with,odified live vaccine[J]:Immunization of ducklings.Am J Vet Res.1970,31:1275-1281.
    [58]Dardiri A H.Duck viral enteritis(duck plague)characteristics and immune response of the host[J].Am J Vet P,es.1975,36(4 pt 2):535-538.
    [59]Lin W K,Lain M,& Clark W E.Active and passive immunization of ducks against duck viral enteritis[J].Avian Dis.1984,25:965-977,.
    [60]Lin W K& Lain M.Isolation of an apathogenie immunogenic strain of duck enteritis virus from waterfowl in California[J].Avian Dis.1984,28:641-650.
    [61]Lam K M & Lin W Q.Antibody-mediated resistance against duck enteritis virus infection[J].Can J Vet P,es.1986,50:380-383.
    [62]Shawky S A & Sandhu T S.Inactivated vaccine for protection against duck virus enteritis[J].Avian Dis.1997,41(2):461-468.
    [63]马秀丽,宋敏训,王莉莉,等.间接ELISA检测鸭瘟抗体的研究和应用[J].山东农业科学.2005,1:62-64.
    [64]范存军,谭诗文,等.鸭瘟弱毒疫苗对雏鸭的饮水免疫试验[J].中国畜禽传染病.1990,12(1):13.
    [65]袁明龙,杨永纪,诸奎龙,等.鸭瘟抗体检测方法研究[J].中国预防兽医学报.2001,23(2):140-143.
    [66]Kulkarni D D,James P C,Sulochana S,et al.Assessment of the immune response to duck plague vaccinations[J].P,es Vet Sci.1998,64(3):199-204.
    [67]Islam M A,Samad M A,gahman M B,et al.Assessment of immunologic responses in khaki cambell ducks vaccinated against duck plague[J].International Journal of Poultry Science.2005,4(1):36-38.
    [68]范存军,谭诗文.鸭瘟弱毒疫苗对雏鸭的饮水免疫试验[J].中国畜禽传染病.1990,1:31.
    [69]谭诗文,范学军,朱德荣.鸭瘟弱毒疫苗早期免疫的研究Ⅰ.鸭瘟疫苗早期免疫途径 和时间以及程序的研究[J].畜牧兽医学报.1990,21(4):338-346.
    [70]杨元北.中雏鹅鸭瘟的防治[J].中国兽医杂志,1995,8(21):31.
    [71]赵进.鹅的鸭瘟病诊疗报告[J].畜牧与兽医.1995,1(27):26.
    [72]李飞扬,程龙飞,黄瑜.某北京鸭场暴发.鸭瘟的诊断与控制[J].中国家禽.1998,20(9):45.
    [73]边传周,袁道强,陈现锋,等.鸭瘟的诊断与防治[J].中国兽医科技.2000,30(9):39-40.
    [74]殷延秀,房宝志.鸭瘟的防治[J].疾病防治.2000,4:37.
    [75]黄瑜.鸭瘟的诊断与防治[J].福建畜牧兽医.1999,21(1):35-36.
    [76]蔡明法,周承永,胡仕福,等.鸭瘟流行的新特征和防治对策[J].浙江畜牧兽医.2000,3:24.
    [77]Poonia B,Nelson S,Bagby G J,et al.Intestinal lymphocyte subsets and turnover are affected by chronic laconic consumption implications for SIV/HIV infetction[JJ.J Acquir Immune Defic Syndr.2006,41(5):537-547.
    [78]Neutra M R & Kozlowski P A.Mucosal vaccines:the promise and the challenge[J].Nat Rev Immunol.2006,6(2):148-158.
    [79]Hong-Yin W U,Samira A,Stinson D,et al.Generation of female genital tract antibody responses by local or central(common)mucosal immunization[J].Infection and immunity.2000,68(10):5539-5545.
    [80]Lehner T,Bergmeier L,Wang Y,et al.A rational basis for mucosal vaccination against HIV infection[J].Immunol Rev.1999,170:183-196.
    [81]Bieneustock J,McDermott M,Befus D,et al.A common mucosal immunologic system involving the bronchus,breast,and bowel[J].Adv Exp Med boil.1978,107:53-59.
    [82]Mestecky J,McGhee M R.Imrnunoglobulin A(IgA):molecular and cellular interactions involved in IgA biosynthesis and immune response[J].Adv Immunol.1987,40:153-245.
    [83]Kuper C F,Koornstra P J,Hameleers D M,et al.The role of nasopharyngeal lymphoid tissue[J],Immunel Today.1992,13:219-224.
    [84]Benstein J M.Mucosal immunology of the upper respiratory tract[J].Respiration.1992,59(3):3-13.
    [85]Pabst R.Is Blat a major component of the human lung immune system[J]? Immunol Today.1992,13:119-122.
    [86]Kolopp-Sarda M N,Bene M C,Massin N,et al.Immunohistological analysis of macrophages,B-cells and T cells in the mouse lung[J].Anat Rec.1994,239:150-157.
    [87]Brandzae G.Molecular and cellular aspects of the secretory immunoglobulin system[J].APMIS.1996,103:1-9.
    [88]Chintalacharuvu KR,Morrison S L.Production and characterization of recombinant IgA[J].Immunotechnology.1999,4(3-4):165-174.
    [89]Brandtzaeg P.Role of secretory antibodies in the defence against infections[J].Int J Med Microbiol.2003,293(1):3-15.
    [90]Katherine J S,Amy B H,Michael V,et al.Role of immunoglobulin A in Protection against reovirus entry into murine Peyer'Patches[J].J Virol.2001,75(22):10870-10879.
    [91]Dianne L T,Michael P H,Marianne B,et al.Central importance of immunoglobulin A in host defense against Giardia SPP[J].Infection and immunity.2002,70(1):11-18.
    [92]Carolyn J M.Immunoglobulin A1 protease production by haemophilus influenzae and Streptococcus pneumoniae[J].Infection and immunity.1979,26(1):254-261.
    [93]Thomas A B,Jiri M.Immunoglobulin A subclass distribution of naturally occurring salivary antibodies to microbial antigens[J].Infection and immunity.1985,49(2):459-462.
    [94]McGhee J R.& Mestecky J.In defense of mucosal surfaces.Development of novel vaccines for IgA responses protective at the portals of entry of microbial pathogens[J].Infect Dis Clin North Am.1990,4(2):315-41.
    [95]Michalek S M,Chiders N K.Development and outlook for a caries vaccine[J].Crit Rev Oral Biol Med.1990,1:37-54.
    [96]Renegar K B&Small J R.Passive transfer of local immunity to influenza virus infection by IgA antibody[J].J Immunol.1991,146:1972-1978.
    [97]Parr M B,Parr E L.Protective immunity against HSV-2 in the mouse vag ina[J].J Reprod Immunol.1997,36(1-2):77-79.
    [98]Michetti P,Mahan M J.Monoclonal secretory immunoglobulin A protect mice against oral challenge with the invasive pathogen salmonella typ hunurium[J].Infection and Immunity.1992,60(5):1786-1792.
    [99]Ball J M,Herdy M E,Atmar R L,et al.Oral immunization with rec ombinaut Norwalk virus like particles induces a systemic and mucosal immune response in mice[J].J Virol.1998,72(2):1345.
    [100]Mantis N J,McGuirmess C R,Sonuyi O,et al.Immunoglobulin A Antibodies against Kicin A and B Subunits Protect Epithelial Cells from Ricin Intoxication[J].Infect Immun.2006,74(6):3455-62.
    [101]Corthesy B.Recombinant secretory immunoglobulin A in passive immunotherapy:linking immunology and bioteclmology[J].Curr Pharm Biotechnol.2003,4(1):51-67.
    [102]Woof J M,Kerr M A.The function of immunoglobulin A in immunity[J].J Pathol.2006,208(2):270-82.
    [103]Kurono Y,Fujiyoshi T,Mogi G,et al.Secretory IgA and bacterial adherence to nasal mucosal cells[J].Ann Otol Rhinol Laryngol.1999,98:273-277.
    [104]Majumdar A S,Ghose A C.Evaluation of the biological properties of different classes of human antibodies in relation to cholera[J].Infection and immunity.1981,32(1):9-14.
    [105]Wold A E,Mestecky J,Tomana M,et al.Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin[J].Infection and immunity.1990,59(7):2513.
    [106]William P R,Alice H C.Role of immunoglobulins in protection against shigella-induced keratoconjunctivitis[J].Infection and immunity.1975,11(6):1265-1268.
    [107]Rodriguez A,Rottenberg M,Tjarnlund A,et al.Immunoglobulin A and CD8 T-Cell Mucosal Immune Defenses Protect Against Intranasal Infection with Chlamydia pneumoniae[J].Stand J Immunol.2006,63(3):177-83.
    [108]Magnusson K E,Stjernstorm I.Mucosal barrier mechanisms.Interplay between secretory IgA(sIgA),IgG,and mucins on the surface properties and association of salmonellae with intestine and granulocytes[J].Immunology.1982,45(2):239-248.
    [109]Biesbock A R,Reddy M S,Levine M J.Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens[J],infection and immununity.1991,59(10):3492-3497.
    [110]Bratthall D,Gibbons R J.Changing agglutination activities of salivary immunoglobulin A preparations against oral streptococci[J].Infection and Immunity.1975,(11):603-606.
    [111]Taylor H P& Dimmock N J.Mechanism of neutralization of influenza virus by secretory IgA is different from that of monomeric IgA or IgG[J].J Exp Meal.1985,161(1):198-209.
    [112]Armstrong S J & Dimmock N J.Neutralization of influenza virus by low concentrations of hemagglutinin-specific polymeric immunoglobulin A inhibits viral fusion activity,but activation of the ribonucleoprotein is also inhibited[j].J Virol.1992,66(6):3823-3832.
    [113]Bukawa H,Seldgawa K I,Hamajima K,et al.Neutralization of HIV-1 by secretory IgA induced by oral immunization with a new macromolecular multicomponent peptide vaccine candidate[J].Nat Med.1995,1(7):681-685.
    [114]Dimmock N J.Neutralization of animal viruses[J].Curt Top Microbiol Immunol.1993,183:1-149.
    [115]lamm M E,Nedrud J G,Kaetzel C S,et al.IgA and mucosal defense[J].Acta Pathol Microbiol Immunol Scand.1995,103(4):241-246.
    [116]Mazanec M B,Nedrud J G,Kaetzel C S,et al.A three-tiered view of the role of IgA in mucosal defense[J].Immunol Today.1993,14(9):430-435.
    [117]Mazanec M B,Kactzel C S,Neudrud J G.Intracelluar neutralization of virus by immunoglobulin A antibodies[J].Proc Natl Acad Sci USA.1992,89(15):6901-6905.
    [118]Apter F M,Michetti P,Winner L S,et al.Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A(IgA)antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo[J].Infection and Immunity.1993,61(12):5279-5285.
    [119]Blanehard T G,Czinin S J,Maurer R,et al.Urease-specific monoclonal antibodies prevent Helicobacter felis infection in mice[J].Infection and Immunity.1995,63(4):1394-1399.
    [120]Fukui Y,FuKui K,Moriyama T,et al.Inhibition of enzymes by human salivary immunoglobulin A[J].Infection and Immunity.1973,8:335-340.
    [121]Gilbert J V,Plaut A G,Longmaid B,et al.Inhibition of microbial IgA proteases by human secretory IgA and serum[J].Mol Immunol.1983,20(9):1039-1049.
    [122]Gregory R L,Kindle J C,Hobbs L C,et al.Function of anti-streptococcus mutans antibodies:inhibition of virulence factors and enzyme neutralization[J].Oral Microbiol.Immunol.1990,5(4):181-188.
    [123]Gregory R L,Michalek S M,Shechmeister I L,et al.Function of anti-streptococcus mutaus antibodies:anti-ribosomal antibodies inhibit acid production,growth,and glucose phosphotrausferase activity[J].Infection and immunity.1984,45(1):286-289.
    [124]Vaerman J P,Derijck-Langendries A,Rits M,et al.Neutralization of cholera toxin by rat bile secretory IgA antibodies[J].Immunology.1985,54(3):601-603.
    [125]Brandtzaeg P.Molecular and celluar aspects of the secretory immunoglobulin system[J].Acta pathol Microbiol Immunol Scand.1995,103(1):1-19.
    [126]Kaetzel C S,Robinson J K,Chintalacharuvu K R,et al.The polymeric immunoglobulin receptor(secretory component)mediates transport of immune complexes across epithelial cells:a local defense function for IgA[J].Proc Natl Acad Sci USA.1991,88(19):8796-8800.
    [127]Deslauriers N,Seguin J,Trudel L.Differential recognition of oral indigenous bacteria by salivary immunoglobulin A and G[J].Microbiol Immunol.1987,31(3):199-209.
    [128]Brandtzaeg P,Fjellanger I,Gjeruldsen S T.Adsorption of immunoglobulin A onto oral bacteria in vivo[J].J Baeteriol.1968,96(1):242-249.
    [129]Tagliabue A,Villa L,Borasehi D,et al.Nature anti-bacterial activity against Salmonella typhi y human T4+ lymphocytes armed with IgA antibodies[J].J Immunol.1985,135(6):4178-4182.
    [130]Kilian M,Mestecky J,Russell M W.Defence mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A protease[J].Microbiol Rev.1988,52(2):296-303.
    [131]Corthesy B & Spertini F.Secretory immunoglobulin A:from mucosal protection to vaccine development[J].Biol Chem.1999,380(11):1251-62.
    [132]Kirkeby L,Rasmussen T T,Reinholdt J,et al.Immunoglobulins in nasal secretions of healthy humans:structural integrity of secretory immunoglobulin A1(IgA1)and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria[J].Clin Diagn Lab Immunol.2000,7(1):31-9.
    [133]Suzuki K,Meek B,Doi Y,et al.Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut[J].Immunology.2004,101(7):1981-1986.
    [134]Fagarasan S,Honjo T.Regulation of IgA synthesis at mucosal surfaces[J].Curr Opin Immunol.2004,16(3):277-83.
    [135]lamm M E.Interaction of antigens and antibodies at mucosal surfaces[J]Annu Rew Microbiol.1997,51:311-340.
    [136]Maxson R T,Jackson R J,Smith S D.The protective role of enteral IgA supplement in neonata 1 gut origin sepsis[J].J Pediatr surg.1995,30(2):231-234.
    [137]Nugent J,Po A L,Scott E M,et al.Design and delivery of non-parenteral vaccines[J].J Clin Pharm Ther.1998,23(4):257-285.
    [138]Mestecky A.The common mucosal immune system and current strategies for induction of immune response in external secretions[J].J Clin Immune.1987,7(4):265-276.
    [139]McGhee J R,Mestecky J,Dertzbaugh M T,et al.The mucosal immune system:from fundamental concepts to vaccine development[J].Vaccine.1992,10(2):75-88.
    [140]Mestecky J,Michalek S M,Moldoveanu Z,et al.Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans[J].Behring Iust mitt.1977,98:33-43.
    [141]Mowat A M & Viney J L.The anatomical basis of intestinal immunity[J].Immnuol Rev.1997,156:145-166.
    [142]Brandtzaeg P,Faetad I N,Haraldaen G,et al.Regional specialization in the mucosal immune system:primed ceils do not always home along the track[J].Immunol Today.1999,20:267-277.
    [143]Weisz-Carrington P,Grimes S R J,et al.Gut-associated lymphoid tissue as source of an IgA immune response in respiratory tissues after oral immunization and intrabronchial challenge[J].Cell Immunol.1987,106(1):132-138.
    [144]Lazarus N H,Kunkel E J,Johnston B,et al.A common mucosal chemokine (Mucosae-Associated Epithelial Chemokine/CCL28)selectively attracts IgA plasmablasts[J].J Immuol.2003,170:3799-3805.
    [145]McDermott M R,Bienenstock J.Evidence for a common mucosal immunological system:Ⅰ.migration of B immunoblasts into intestinal,respiratory,and gentital tissues[J].J Immunol.1979,122(5):1892-1898.
    [146]Czerkinsky C,Svennerholm A M,Quiding M,et al.Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans[J].Infection and immunity.1991,59(3):996-1001.
    [147]Czerkinsky C,Prince S J,Michalek S M,et al.IgA antibody-producing cells in peripheral blood after antigen ingestion:evidence for a common mueosal immune system in humans[J].Proc Natl Acad Sci USA.1987,84(8):2449-1453.
    [148]Haneberg B,Kendall D A H M,Apter F M,et al.Induction of specific immunoglobulin A in the small intestine,colon-rectum,and vagina measured by a new method for collection of secretions from local mucosal surfaces[J].Infection and Immunity.1994,62(1):15-23.
    [149]Aibanese C T,Smith S D,Watkins S,et al.Effect of secretory IgA on transepithelial passage of bacteria across the intact ileum in Vitro[J].J Am Coll Surg.1994,179(6):679-688.
    [150]Mestecky J & MeGhee J R.Prospects for human mucosal vaccines[J].Adv Exp Med Biol.1992,327:13-23.
    [151]Kaiserlian D,Vidal K,RevillardJ P.Murine enterocytes can prensent soluble antigen to specific class restricted CD4~+T cells[J].Eur J Immunol.1989,19(8):1513-1516.
    [152]林纪胜,徐建国.粘膜免疫的研究进展[J].中国人兽共患病杂志.1999,15(4):86-88.
    [153]Neutra M R.Current concepts in mucosal immunity.V Rols of M cells in transepithelial transport antigen and pathogens to the mucosal immune system[J].Am J Physiol.1998,274:G755-91.
    [154]Gebert A,Rothkotter H J,Pabst R M.Cells in peyer's patches of the intestine[J].Cell.1996,167:91-159.
    [155]Ermak T H,Dougherty E P,Bhagat H R,et al.Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer's patch M cells[J].Cell Tissue Res.1995,279(2):433-436.
    [156]Wolf J L & Bye W A.The membranous epithelial(M)cell and the mucosal immune system[J].Annu Rev Med.1984,35:95-112.
    [157]Neutra M R,Frey A,Kraehenbuhl J P.Epithelial M cells:gateways for mucosal infection and immunization[y].Cell.1996,86(3):345-348.
    [158]张永振,许建国.粘膜免疫系统与粘膜免疫应答的诱导[J].细胞生物学杂志.2001,23(1):11-16.
    [159]Neutra M R,Pringault E,Kraehenbuhl J P.Antigen sampling across epithelial barriers and induction of mucosal immune responses[J].Annu Rev Imunol.1996,14:275-300.
    [160]George A,Cebra J J.Responses of single germinal center B cells in T-cell-dependent microculture[J].Proc Natl Acad Sci USA.1991,88(1):11-15.
    [161]Liu L M,MacPherson G G.Antigen acquisition by dendritic cells,intestinal dentritic cells acquire antigen administered orally and can prime naive T cells in vivo[J].J Exp Med.1993,177(5):1299-1307.
    [162]Hodgkin P D,Yamashita L C,Seymour B,et al.Members from both Th1 and Th2 T cells:Clones stimulate B cell proliferation and prepare B cell for lymphokine induced differentiation to secreate Ig[J].J Immunol.1991,147(11):3696-3702.
    [163]Mosmann T R,Coffman g L.Th1 and Th2 cells:different patterns of lymphokine secretion lead to functional properties[J].Annu Rew Immunol.1989,7:145-73.
    [164]Ramsay A J,Husband A J,Ramshaw I A,et al.The role of interleukine-6 in mucosal IgA antibody response in vivo[J].Science.1994,264(5158):561-563.
    [165]Takatsu K,Takaki S,Hitoshi Y,et al.Cytokine receptors Ly-1 B cells:IL-5 and its receptors system[J].Ann N Y Acad Sci.1992,651:241.
    [166]Taguchi T,Aicher W K,Fujihashi K,et al.Novel function for intestinal intraepithelial lymphocytes murine CD3+,γ/β T cell produced IFN-γand IL-5[J].J Immunol.1991,147:3736-3744.
    [167]Kyiono H,McGhee J R.Mucosal immunology:intraepithelial lymphocytes[J].Adv Host Defense Mechanisms.1994,9:1-204.
    [168]Lefrancois L.Intraepithelial lymphocytes of the intestinal mucosa:curiouser and couriouser[J].Semin Immunol.1991,3(2):99-108.
    [169]Taguchi T,McGhee J R,Coffman R L,et al.Analysis of Th1 and Th2 cells in murine gut-associated tissues.Frequencies of CD4~+ and CD8~+ T cells that secret IFN-γand IL-5[J].J Immunol.1990,145(1):68-77.
    [170]Barrett T A,Gajewski T F,Danieplour D,et al.Differential function of intestinal intraepithelial lymphocyte subsets[J].J Immunol.1992,149(4):1124-1130.
    [171]Fujihashi K,Yamamoto M,McGhee J R,et al.Alpha beta T cell receptor-positive intraepithelial lymphocytes with CD4+,CDS- and CD4+,CD8+ phenotypes from orally immunized mice provide Th2-like function for B cell responses.[y].J Immunol.1993,151(12):6681-6691.
    [172]Lefrancois L,Goodman T.In vivo modulation of cytolytic activity and Thy-lexpression in TCR-γδ intraepithelial lymphocytes[J].Science.1989,243(4899):1716-1718.
    [173]Tagucht T,Aicher W K,Fujihashi K,et al.Novel function for intestinal intraepithelial lymphocytes routine CD3+,γ/δT cell produced IFN-γand IL-5[J].J Immunol.1991,147(11):3736-3744.
    [174]Sydora B C,Mixter P F,Holcombe H K,et al.Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells is response to mitogenic signals[J].J Immunol.1993,150(6):2179-2191.
    [175]Yamaoto S,Russ F,Teixeira H C,et al.Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelial γ/δ T lymphocytes[J].Infection and immunity.1993,61(5):2154-2161.
    [176]Emoto M,Neuhaus O,Emoto Y,et al.Influence of β2-microglobulin expression on gamma interferon secretion and target cell lysis by intraepithelial lymphocytes during intestinal Listeria monocytogenes infection[J].Infection and immunity.1996,64(2):569-575.
    [177]Roberts S J,Smith A 1,West A B,et al.T cell αβ~+andγδ~+ deficient mice display abnormal but distinct phenotypes towards a natural,widespread infection of the intestinal epithelium[J].Proc Natl Acad Sci USA.1996,93(21):11774-11779.
    [178]Kaufmann S H.Immunity to intracelluar bacteria[J].Annu Rev Immunol.1993,11:129-163.
    [179]Fujihashi K,Yamamoto M,McGhee J R,et al.Immunoregulatory functions for murine intraepithelial lymphocytes:γδ+ T cell receptor-positive(TCR+)T cells abrogate oral tolerance,while α/βTCR+ T cells provide B cell help[J].J Exp Med.1992,175:695-707.
    [180]Nagler-Anderson C.Functional aspects of the mucosal immune system.[J].Adv Exp Med Biol.2006,579:15-23.
    [181]Chen H M.Recent advances in mucosal vaccine development[J].J Contro Release.2000,67:117-128.
    [182]郭松林,谌南辉.粘膜免疫研究进展[J].预防兽医学进展.2000,2(3):1-5.
    [183]Savage D C.Microbial ecology of the gastrointestinal tract[J].Annu Rev Microbiol.1977,31:107-133.
    [184]McnabbS P C&Tomasi TBT.Host defense mechanisms at mucosal surfaces[J].Annu Rev Microbiol.1981,35:477-479.
    [185]Crabbe P A,Bazin H,Eyssen H,et al.The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut[J].Int Arch Allergy.1968,34:362-375.
    [186]Ahl T,Reunholdt J.Subclass distribution of salivary secretory immunoglobulin A antibodies to oral streptococci[J].Infection and Immunity.1991:59(10):3619-3625.
    [187]Aldred M J,Wade W G,Llewelyn D R,et al.Class-specific antibodies to Streptococcus mutans in human serum,saliva and breast milk[J].J Immunol Methods.1986,87(1):103-108.
    [188]Brown T A,Mesteckey J.Immunoglobulin A subclass distribution of naturally occurring salivary antibodies to microbial antigens[J].Infection and immunity.1985,49(2):459-462.
    [189]Deslauriers N,Oudghiri M,Seguin J,et al.The oral immune system:dynamics of salivary immunoglobulin production in the inbred mouse[J].Immunol Invest.1986,15(4):339-349.
    [190]Masi T B J.Oral tolerance[J].Trausplantation.1980,29:353-356.
    [191]Mowat A M.Oral tolerance and regulation of immunity to dietary antigens.In:Ogra PL,Mestecky J,Lamm M,et al.,eds.Handbook of mucosal immunology[J].San Diego:Academic Press,1994:185,201.
    [192]Mowat A M,The regulation of immune responses to dietary protein antigens[J].Immuno Today.1987,8:93.
    [193]Friedman A Weiner H L.Induction of anergy or active suppression following oral tolerance is determined by antigen dosage[J].Proc Sci USA.1994,91:6688-6692.
    [194]金光明,王珏,宁康建,等.黏膜免疫学与动物疫病防制研究进展[J].中国农学通报.2000,21(4):21-23,79.
    [195]邓明俊,张彦明.DNA疫苗的黏膜免疫[J].生命科学研究.2002,6(4):128-131.
    [196]Frederik W,an G,Huan H,et al.Vaccines for mucosal immunity to combal emergine infectious diseases[J].Emerg infect Dis.2000,6(2):123-32.
    [197]Kristina E,Jan H.Recent advances in mucosal vaccines and adjuvants[J].Current Opinion in Immunol.2002,14:666-672.
    [198]沈文涛,周鹏.黏膜免疫与转基因植物口服疫苗的研究[J].中华预防医学杂志.2003,37(5):376-378.
    [199]Amanda M W,Gharles J A.Plant cell factories and mucosal vaccines[J],Current Opinion in Biotechnol.2003,14:145-150.
    [200]Mestecky J.The common mucosal immune system and current strategies for induction of immune responses in external secretions[J].J Clin Immunol 1987,7:265-276.
    [201]徐建生,成大荣,崔治中.鸡局部黏膜免疫系统对细菌感染的IgA反应[J].中国家禽. 2004,26(24):16-17.
    [202]王彩虹,高齐瑜,孙斌.禽类黏膜免疫系统的一种研究模型[J].中国农业科学.2002,35(7):839-843.
    [203]杨倩,练高健,黄国庆.生长抑素亚单位苗对鸡黏膜免疫的影响[J].畜牧与兽医.2002,34(4):4-6.
    [204]Sumio Hoshi,Toshihjro,Tetsuo Nunoya,et al,Induction of protective immunity in chickens orally immunized with inactivated infectious bursal disease virus[J].Vaccine.1995,13(3):245-252.
    [205]Muir W I,Bryden W L,Husband A J,Immunity,vaccination and the avain intestinal tract[J].Development and Comparative Immunology.2000,24:325-342.
    [206]Fukutome K,Watarai S,Mukamoto M,et al.Intestinal mucosal immune response in chickens following intraocular immunization with liposome-associated Salmonella enterica serovar enteritidis antigen[J].Developmental and Comparative Immunology.2001,25:475-484.
    [207]齐雪峰,杨晓燕,程安春,等.口服鸭瘟弱毒苗诱导鸭黏膜和系统免疫中IgA、IgM 和IgG发生规律研究[J].畜牧兽医学报.2007,38(8):872-876.
    [208]齐雪峰,杨晓燕,程安春,等.鸭瘟抗体间接ELISA检测试剂盒的研制及初步应用[J].中国兽医科学.2007,37(8):690-694.
    [209]Ian M M,Katherine E & Arden A N.Survey and summary Real-time PCR in virology[J].Nucleic Acids Research.2002,30(6):1292-1305.
    [210]David G G.Gene quantification using real-time quantitative PCR,An emerging technology hits the mainstream[J].Experimental Hematology.2002,30:503-512.
    [211]郭宇飞,程安春,汪铭书.鸭病毒性肠炎病毒荧光实时定量PCR检测方法的建立和应用[J].中国兽医科学.2006,36(06):444-448.
    [212]刘菲,程安春,汪铭书,等.鸭瘟病毒强毒株在急性人工感染成年鸭体内分布规律的研究[J].中国兽医学报.2004,24(3):228-230
    [213]Forrest B D.Indirect measurement of intestinal immune responses to an orally administered attenuated bacterial vaccine[J].Infection and Immunity.1992,60(5):2023-3029.
    [214]Qi X F,Yang X Y,Cheng A C,et al.Quantitative analysis of virulent duck enteritis virus loads in experimentally infected ducklings[J].Avian Dis.2008,52.
    [215]Egmond M,Garderen E,Spriel A B.Function of immunoglobulin A in immunity[J].Gut.2000,47:751-752.
    [216]Silver K J,Hutchings A B &Vajdy M.Role of immunoglobulin A in protection against reovirus entry into murine Peyer's patches[J].J Virology.2001,11:10870-10879.
    [217]Langford T D,Housley M P & Boes M.Central importance of immunoglobulin A in host defense against Giardia spp[J].Infection and Immunity.2002,4:11-18.
    [218]Sheela R R,Babu U,Elankumaran S.Immune responses against Salmonella enterica serovar enteritidis infection in virally immunosuppressed chickens[J].Clinical and Diagnostic Laboratory Immunology.2003,7:670-679.
    [219]Grewal H M S,Karlsen T H,Vetvik H,et al.Measurement of specific IgA in faecal extracts and intestinal lavage fluid for monitoring of mucosal immune response[J].J Immunol Met.2000,239:53-62.
    [220]Bacon A,Makin J,Sizer P J,et al.Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens[J].Infection and Immunity.2000,10:5764-5770.
    [221]Jayawardane G W L & Spradbrow P B.Mucosal immunity in chickens vaccinated with the V4 strain of Newcastle disease virus[J].Vet Micro.1995,46:69-77.
    [222]Paalangara R,McClure S,McCullagh P,et al.Intestinal exposure to a parasite antigen in utero depresses cellular and cytokine responses of the mucosal immune system[J].Vete Immuno Immunopatho.2003,93:91-105.
    [223]Ewert D L.The local immune response of the chicken to Newcastle disease virus[J].Diss Abstr Int.1997,77:3343-3344.
    [224]Toro H,Lavand P,Vallejos P,et al.Transfer of IgG from serum to lachrymal fluid in chickens[J].Avian Dis.1993,37:60-66.
    [225]Johal S S,Lambert C P,Hammond J,et al.Colonic IgA producing ceils and macrophages are reduced in recurrent and non-recurrent Clostridium difficile[J].J Clinic Pathol.2004,57:973-979.
    [226]Woodcock N P,Robertson J,Morgan D R,et al.Bacterial translocation and immunohistochemical measurement of gut immune function[J].J Clinic Patho.2001,54:619-623.
    [227]Yun C H,Lillehoj H S & Choi K D.Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes[J].Infection and Immunity.2000,3:1282-1288.
    [228]杨汉春.动物免疫学[M],北京:中国农业大学出版社,1996,26-27.
    [229]Chen H M.Recent advances in mucosal vaccine development[J].J Control Release.2000,67:117-128.
    [230]Liliehoj H S & Trout J M.Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites[J].Clinical and Microbiology Reviews.1996,7:349-360.
    [231]Rose M E,Orlans E,Payne A W R & Hesketh P.The origin oflgA in chicken bile: its rapid active transport from blood[J].Eur J Immunol.1981,11:561-564.
    [232]Fisher M M,Nagy B,Bazin H,et al.Biliary transport of IgA:role of secretory component[J].Proc Natl Acad Sci USA.1979,76(4):2008-2012;
    [233]付俊俐,王卫星,郭素菊.胆囊切除术后肠道菌群及SIgA含量的研究[J].临床外科杂志.2005,13(2):95-97.
    [234]Lazarus N H,Kunkel E J,Johnston B,et al.A common mucosal chemokine (Mucosae-Associated Epithelial-Chemokine/CCL28)selectively attracts IgA plasmablasts[J].J Immuol.2003,170:3799-3805.
    [235]Kagnoff M F.Mucosal immunology:new frontiers[J].Immunology Today.1996,17(2):57-59.
    [236]Kolopp-Sarda M N,Bene M C,Massin N,et al.Immunohistological analysis of macrophages,B-cells and T cells in the mouse lung[J].Anat Rec.1994,239:150-157.
    [237]Bertram E M,Wilkinson R G,Lee B A,et al.Identification of duck T lymphocytes using an anti-human T cell(CD3~+)antiserum[J].Vet Immuno Immunopatho.1996,51(3-4),353-363.
    [238]Taguchi T,McGhee J R,Coffman R L,et al.Analysis of Th1 and Th2 cells in murine gut-associated tissues.Frequencies of CD4~+ and CD8~+ T cells that secret IFN-γ,and IL-5[J].J Immunol.1990,145(1):68-77.
    [239]Islam M R,Nessa J,Halder K M.Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J].Avian Patho.1993,22(2):389-393.
    [240]陆德源.医学微生物学[M]:北京:人民卫生出版社,2001.
    [241]杨汝德,李武明,许燕滨.动物和人类的肠道菌群的形成及意义[J].微生物学杂志.1998,18(1):52-55.
    [242]顾国胜,任建安,黎介寿.结肠黏膜表面保护系统与肠道菌群[J].中国实用外科杂志.2003,23(2):118-120.
    [243]周殿元,潘令嘉.肠道菌群失调及治疗进展[J].胃肠病学.2001,6(4):F002-F004.
    [244]Moissenet D,Valcin M,Marchand V,et al.Comparative DNA analysis of Bordetella pertussis clinical isolates by pulsed-field gel electrophoresis,randomly amplified polymorphism DNA,and ERIC polymerase chain reaction[J].FEMS Microbiology Letters.1996,143(2-3):127-132.
    [245]Millemann Y,Lesage-Descauses M C,Lafont J P,et al.Comparison of random amplified polymorphic DNA analysis and enterobacterial repetitive intergenic consensus-PCR for epidemiological studies of Salmonella[J].FEMS Immunology and Medical Microbiology.1996,14(2-3):129-134.
    [246]Mehta A,MiiMehta Y R,Tosato Y B.ERIC- and REP-PCR amplify non-repetitive fragments from the genome of Drechslera avenae and Stemphylium solani[J].FEMS Microbiology Letters.2002,211(1):51-55.
    [247]Versalovic J,Koeuth T,et al.Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J].Nucleic Acids Res.1991,19(24):6823-31.
    [248]Cao Sheng-Yan,Wang Ming-Shu,Cheng An-Chun,et al.Comparative analysis of intestinal microbial community diversity between healthy and orally infected ducklings with Salmonella enteritidis by ERIC-PCR[J].World Journal of Gastroenterology.2008,14(7):1120-1125.
    [249]康白.微生态学[M].大连:大连出版社,1988,78-44.
    [250]Shroff K E,Cebra J J.Development of mucosal humoral immune responses in germ-free(GF)mice[J].Adv Exp Med biol.1995:371 A:441-446.
    [251]Shroff K E,Meslin K,Cebra J J.Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permamently colonizing the gut[J].Infection and Immunity.1995,63(10):3904-3913.
    [252]Moreau M C,Ducluzeau R,Guy-Grand D,et al.Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin[J].Infection and Immunity.1978,21:532-539.
    [253]何明清,程安春.动物微生态学[M].成都:四川科学技术出版社,2004,15-21.
    [254]Simon G L,Gorbach S L.Intestinal flora in health and disease[J].Gastroenterology.1984,86:174-193.
    [255]Murphy J,Devane M L,Robson B,et al.Genotypic characterization of bacteria cultured from duck faeces[J].J App Microbio.2005,99:301-309.
    [256]Schexek L,Altherr B J,Schmidt M F,et al.Influence of the probiotic bacillus cereus vex.toyoi on the intestinal immunity of piglets[J].Vet Immunol Immunopathol.2007,120:136-147.
    [257]Li K,Zheng T,Tian Y,et al.Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp,Litopenaeus vannamei[J].Biotechnol Lett.2007,29:525-530.
    [258]Barnes E M,Impey C S.The isolation and properties of the predominant anaerobic bacteria in the caece of chickens and turkeys[J].Brit Poult Sci.1970,11:467-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700