用户名: 密码: 验证码:
大型回转双驱动系统关键参数测量与同步性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为大型回转双驱动典型设备,翻车机是电力、化工、冶金、港口等行业不可或缺的原料储运重要装备,具有结构庞大、承载物重、运转低频、启制动频繁和机械重心经常性偏移等特点。工作过程中常常出现传动系统齿断、载荷平台塑性形变等机械故障,由此导致生产断续,甚至造成整条生产线瘫痪,给企业带来巨大经济损失。因此,研究翻车机,特别是双驱动三车翻车机传动系统中关键参数测量与控制同步已成为大型回转机械装备制造行业和测控领域的热点课题。
     本文从双驱动三车翻车机的机械结构、承载方式与工作原理入手,综合运用数学、机械学、动力工程学,以及先进测控理论与方法,分析其运行特性,研究关键参数的测量方法和控制同步策略的实施。
     基于计算机图形学,引入矩阵算子,采用坐标转换的方法,研究了翻车机转体翻转过程中的力矩动态分布,推导出传动系统静载力矩方程。运用流质转动惯量学,分析了翻卸过程中流质时变特性,建立了卸载过程流质时变产生的动态转矩数学模型,实现关键参数历时动态计算,为翻车过程的优化控制奠定了基础。
     给出了一种基于相关相位差与广义预测软测量频率跟踪相结合的转矩测量新方法,实现采样频率与被测信号时变的跟踪,有效地解决了系统运行频率时变、物料流质堆放分布不均、载荷平台弹性波动、平台与车体耦合不紧密等干扰,提高了转矩测量精度。
     研究了翻车机传动系统断齿和承载平台塑性变形特点,给出了大型回转翻车机双驱动不一致导致断齿和承载平台塑性变形的结论及其论据,并在机械方面提出末级传动中引入自适应柔性传动,依据磨损转换原理,将大齿圈的磨损完全转移到滚轮。引入粗调、微调的概念和方法,确保小齿轮和大齿圈两转动副始终保持正确的啮合状态,使得断齿和形变现象减至最少。提出滚轮磨损的测量方案,实现系统传动精度的自动补偿。
     研究了广义预测控制的实时快速性特点,设计了基于广义预测的双驱动控制同步子系统,在两驱动子系统通道间加入一模糊控制器,基于协调控制原理,以两子系统相应状态的差值达到最小为目标,采用同步误差非等分共反馈模糊校正的控制方案,使两同步子系统的输出保持一致,提高了系统对同步误差的响应速度,有效地降低了两驱动子系统的同步误差,保证了翻车机双驱动一致性,解决了双驱动不一致导致机械故障频发的问题,确保其工作稳定可靠。本文提出的控制同步策略为大型回转设备中多子系统的同步精度提供了有利的保证,同时也对其他的控制同步系统开拓了思路。
As a large rotary equipment which has dual drive at both ends, car dumper is an important material transport equipment which is necessary in electric power, chemical industry, metallurgy and port etc. It has characteristics such as large structure, heavy duty, low frequency operation, stop-and-go and recurrent excursion of machine barycentre. During working process, such mechanical failure as teeth breakdown of transmission system and plastic deformation of load flat appears frequently, which result in the break of production, even the paralysis of whole product line, so tremendous economic loss is inevitable for corporations. Therefore, researches on car dumper, especially key parameter measurement and synchronization control of dual drive triple-car dumper have become hot subjects in large machinery manufacturing and measurement control field.
     This paper starts with machine structure, loading mode and operating principle of dual drive triple-car dumper, utilizes interrelated theory and method of mathematics, mechanics, dynamics and advanced measurement control, analyzes its dynamic working characteristic, researches measurement method of key parameters and implementation of synchronization control.
     By application of coordinate conversion and computer graph software, moment dynamic distribution during whole tumbling process is researched and dead-load moment equation of transmission system is deduced. By using fluidity rotary inertia theory, fluidity time-varying performance during dumping is analyzed and dynamic torque mathematical model is established, which provide basis for optimization control of dumping progress.
     A new torque measurement method based on correlation phase and generalized forecast soft measurement difference frequency tracing is presented to realize time-varying tracing of sampling frequency and measured signal, which solves such interference effectively as frequency time-varying during the system operation, uneven distribution of material, elasticity fluctuation of load flat and untight coupling between flat and bodywork, so measure accuracy of torque is improved.
     The teeth breakdown of transmission system and plastic deformation of load flat of car dumper is researched. The conclusion and argument about above phenomena caused by inconsistency of dual drive is given. Self adapting flexible drive is introduced into the final stage of transmission system. The abrasion of big gear ring is transformed fully to roller wheel based on the abrasion transfer principle. The conception and means of coarse adjustment and delicate adjustment is imported to guarantee exactitude engagement of pinion wheel and big gear ring, which minimize the occurrence of teeth breakdown and deformation. The scheme of roller abrasion and gear mesh measurement is put forward to achieve automation compensation of system driving precision.
     Real-time and rapidity of generalized predictive control is researched and a dual drive synchronization control system of car dumper based on generalized predictive control is designed. A fuzzy controller is added between two channels of dual drive subsystem. Based on coordinated control principle and achieving the goal of difference minimum of corresponding state of two subsystem, a fuzzy correction control program using in-phase error non-uniform common feedback is adopted to make the output of two synchronous subsystem consistent basically, which increase response speed of system to synchronous error, reduce synchronous error of dual drive subsystems effectively, ensure the consistency of car dumper dual drive, solve the recurrent mechanical failure caused by inconsistency of dual drive and enhance the steady reliable operation of car dumpers. The synchronization control strategy presented by this paper provides favorable guarantee for synchronization precision of multi subsystem in large rotary equipments and at the same time explores new ideas for other synchronization control systems.
引文
1王耀斌,简晓春.物流装卸机械.北京:人民交通出版社, 2003,8:183-186
    2张西宁,李艾华,屈梁生.大型回转机械实时在线监测和故障诊断网络系统的研制.机械科学与技术, 1998,17(5):817-819
    3 W. Haschke.Introducing Large Rotary Packing Machines.World Cement, 1990, 21(6):252-255
    4 Alberty Justin, Zibert Johnnie. Repair Technique Extends Rotary Dumper Life. Power Engineering, 1997,101(9):53-54,56
    5 Steven S. Michels, John W. Eglaston. Fatigue Evaluation of a Vintage Rotary Coal Car Dumper. Proceedings of the American Power Conference, 1995,57(1):421-426
    6 V.L. Konyukh, R.A. Ramazanov. Control of Underground Loader-Haul-Dumpers from the Surface. Journal of Mining Science, 2004,40(4): 374-379
    7 Boreman Brent. Design Features Optimize Life of Rotary Car Dumpers. Bulk Solids Handling, 1997,17(4): 621-624
    8李尚义,赵克定.三轴飞行仿真转台总体设计及其关键技术.宇航学报, 1995,16(2): 63-66
    9 Lin Chin E, Jou H.L, Yan J.H. Dynamic Method for Magnetic Torque Measurement Using Pendulum Motion System. IEEE Instrumentation and Measurement Technology Conference. Hamamatsu, 1994: 376-379
    10张凤生,师忠秀.动态转矩测量技术的研究.现代计量测试, 1997,5( 6):10-14
    11杨凤珍.动力机械测试技术.大连:大连理工大学出版社, 2005:147-154
    12 R.J.Hazelden. Optical Torque Sensor for Automotive Steering Systems. Sensors and Actuators, A: Physical, 1993, 37(2):193-197
    13刘彬,宋文健.基于激光多普勒效应的回转机械振动测量方法.计量技术, 2006,(9):11-14
    14乐开端,唐经源,张文定.回转机械扭矩测量技术研究.光子学报, 2001,30(7):868-870
    15赵思宏,范惠林.电机转矩转速测量方法的分析.光学精密工程, 2002,10(3):290-294
    16 W. J. Fleming.Magnetostrictive Torque Sensors Comparison of Branch Cross and Solenoidal Designs.SAE Trans, 1990,99(6):393-420
    17 Rothberg S J, Coupland J.The new laser Doppler acceleroment for shock and vibration measurement[J].Optics and lasers in Engineering,1996,25(4):217-225
    18郑洪涛,李玉榕,乔斌,等.基于模糊神经网络开关磁阻电动机转矩观测.仪器仪表学报,2002,23 (4):351-353, 360
    19马洪文,马彪,孙宪林.动力传动系统变矩器输入转矩测定方法研究.中国机械工程,2003,14 (16):1428-1430
    20苏艳艳.阀门启闭动态转矩检测系统采样数据趋势图的设计与实现.机电工程,2004,21(7):37-40
    21李顶根,曹继光,陈传尧.基于虚拟仪器平台的飞行物体质量特性测量系统.仪器仪表学报, 2003,24(1):53-56
    22 L R.Stanislaw. Towards a global virtual instrument control and a virtual link between experiment and modeling.Thermo-chimica Acta, 2000,(355):107-111
    23缪晓中,杜伟略.相位差测量方法的研究与应用.仪表技术,2000,(3):61-62,67
    24乔晓艳,贾莲凤.基于虚拟仪器的相位差软件测量算法研究.计算机测量与控制, 2003,11(6):415-416
    25 Y.C. Jenq, Phil Crosby. Sinewave Parameter Estimation Algorithm with Application to Waveform Digitizer Effective Bits Measurement.IEEE Transaction on Instrumentation and Measurement,1988, 37(4): 529-532
    26涂爱军.大型翻车机双驱动系统参数分析及同步系统研究.[燕山大学工学硕士论文], 2002:3-5
    27孙大庆.三车翻车机传动系统设计.重工与起重技术, 2004, (1): 7-9
    28 B.Aregger, P.Burg. Flexibility Drives Gear Motor Assembly.Assembly Automation, 1989,9(2): 71-74
    29郑自求,张孝光. BOGIFLEX?传动.机械设计与研究, 1990,(3):25-29
    30张立华,王晶然.柔性传动圆筒混合机的开发与应用.钢铁, 2000, 35(3):60-63
    31张立华.柔性传动在回转圆筒类设备设计中的实践与应用.中国机械工程, 1998, 9(7):82-84
    32路成,周惜春. STATOVAR4-64控制系统在翻车机上的应用.武钢技术,2001,39(1):35-71
    33 I.M.Oppenheim. Application of New Control Technology to Upgrading Bulk Material Handling Equipment. Coal Technology, International Coal Utilization Conference and Exhibition V & VI, Pittsburgh, 1985: 425-439
    34赖天华.高精度伺服传动系统的设计与实践:双电机驱动的伺服传动系统的设计与探讨.电子机械工程, 1996(4):46-48
    35李崇坚,段巍.轧机传动交流调速机电振动控制.北京:冶金工业出版社, 2003,9:11-12
    36 K.H.Bayer, H.Waldmann. Field-oriented Closed-loop Control of a Synchronous Machine with the New Transvektor Control System, Siemens Review, 1972,39(5):220-223
    37 M.Depenbrock. Direct Self-Control (DSC) of Inverter Fed Induction Machine. IEEE Transactions on Power Electronics, 1988, 3(4):420-429
    38 R. M. Keyser, A. R. Cauwenberghe. Extended Prediction Self-adaptive Control. In Barker H A, Young P C eds. Identification and System Parameter Estimation 1985 V. 2.Oxford: Pergamon Press, 1985:1255-1260
    39舒迪前.预测控制系统及其应用.北京:机械工业出版社, 1998,6:17-29
    40 D. W. Clarke, C. Mohtadi. Properties of Generalized Predictive Control, Automica, 1989, 25(6): 859-875
    41 Clarke. Application of Generalized Predictive Control to Industrial Processes. IEEE Control Syst. Maga, 1988,8:49-55
    42 C. E. Garcia, M. Morari. Internmal Model Control, A Unifying Reciew and Some New Results, IEC Process Des. Dev., 1982,21(2):308-323
    43 L. Magni, R. Scattolini. Model predictive control of continuous-time nonlinear systems with piecewise constant control. IEEE Transactions. on Automatic Control, 2004,49(6):900-906
    44 A. Flores, D. Saez. Fuzzy predictive control of a solar power plant. IEEE Transactions on Fuzzy Systems, 2005,13(1):58-68
    45 D. Andone, A. Hossu. Predictive control based on fuzzy model for steam generator. 2004 IEEE International Conference on Fuzzy Systems, 2004,3:1245-1250
    46 C.E. Arcia, D.M. Prett, M. Morari. Model Predictive Control: Theory and Practice-a Survey. Automatic, 1989,25(3):335-348.
    47席裕庚.预测控制.北京:国防工业出版社, 1993,6:207-209
    48 K. B. Pimenta, J. M. Rosario. Application of direct adaptive generalized predictive control (GPCAD) to a robotic joint. ISIE'03. 2003 IEEE International Symposium on Industrial Electronics, 2003,2:1011-1016
    49 A. Mbarek, H. Messaoud. Robust predictive control using Kautz model. Proceedings of the 2003 10th IEEE International Conference on Electronics. Circuits and Systems, 2003,1:184-187
    50 Richalet J, Jacubasch A, etal. Predictive Functional Control:Application to Fast and Accurate Robots.In:Isermann R,ed.Automatic Control Tenth Triennial World Congress of IFAC V.Oxford:Pergamon Press,1988:251-258
    51 Jacubasch A, Kuntze H B, Arber Ch, Richalet J. Application of a New Concept of Fast and Robust Position Control of Industrial Robots.Robotersysteme, 1987,3(3):129-138
    52 M. Tomizuka, J.Hu, T.Chiu. Synchronization of Two Motion Control Axes under Adaptive Feedforward Control. Trans of the ASME, 1992,114(2):34-39
    53 D. R. Seaward, R.C.Johson.Replacement of Mechanical Transmissions by Synchronised Variable Electrical Speed Drives.Proc. of 4th Int. Conf. Elec.Mach.and Drives, 1989:364~368
    54 Hao Y. The Takagi-Sugeno Fuzzy Controllers Using the Simplified Linear Control Rules are Nonlinear Variable Gain Controllers.Automatic,1998,34(2):157-167.
    55李军伟,赵克定.协调控制同步策略在液压仿真转台中的应用.系统仿真学报, 2005,17(7):1645-1647
    56周继成.双液压马达同步驱动电液位置伺服系统的研究.[哈尔滨工业大学博士学位论文]. 1995: 3-15
    57 Y. Koren .Cross-coupled Biaxial Computer Control for Manufaeturing System.ASME Journal of Dynamic Systems, Measurement and Control, 1980,102(12):256-272
    58王朝珠,秦化淑.最优控制理论.北京:科学出版社, 2003:4-15
    59赵春雨,朱洪涛,闻邦椿.多机传动机械系统的同步控制.控制理论与应用, 1999,16(2):179-183
    60蔡明琪,张宗裕,苏祥瑞.应用H∞控制设计同步伺服系统.北京:科学出版社,1993:35-71
    61 Y. Koren, C.C.Lo.Variable-gain Cross-coupling Control of Dynamic for Contouring.Annals of the CIRP, 1991,40(1):371-374
    62郭庆鼎,唐光谱,唐元钢,等.基于自适应控制的双电动机同步传动控制技术的研究.机械工程学报,2002,38(2):79-81
    63 R.Lamaire, I. Valavani, M.Athans etal.A Frequency-domain Estimator for Use in Adaptive Control System.Automatic, l991,27(1):23-38
    64赵洁,王从庆,王雪峰.基于神经网络-遗传算法的双轴运动系统PID控制.自动化技术与应用, 2003,22(7):8-10
    65翁秀华,郭庆鼎,刘德君.双直线电机同步驱动系统中模糊自适应PID控制方法的研究.沈阳工业大学学报.2005,27(1):34-37
    66郭庆鼎,李蒙,郭威. PID控制器参数的遗传算法优化设计基.沈阳工业大学学报.2000,22(1):31-33
    67 L.Hsu. Variable Structure Model Referenced Adaptive Control Using only Input and Output Measuremrnts. Control, 1989,49(3):399-416
    68王锴,王占林,裘丽华,等.液压飞行仿真转台外框FNN控制器设计及仿真.北京航空航天大学学报.2006,32(5):571-574
    69 D.R. Seaward, R.C. Johson.Replacement of Mechanical Transmissions by Synchronised Variable Electrical Speed Drives. Fourth International Conference on Electrical Machines and Drives, London,1989, Istenbul: 364-368
    70 Alexander L.Fradkov, Hiya V.Miroshnik and Vladimir O.Nikiforov. Nonlinear and Adaptive Control of Complex Systems. London: Kluwer Academic Publishers,1999:5-79
    71 William E.Jewell, Garrett Fitzgerald. Multi-motor Drives with AC Motors. The Magazine of Industrial and Control, 1981,23(1): 136-143
    72 P.J.Clarkson, P.P.Acarnley. Instabilities in Dual Stepping Motor Systems. Journal of the Institution of Electronic and Radio Engineers, 1987, 57(5):200-206
    73 Oda Mitsushige. Motion Control of the Satellite Mounted Robot arm Which Assures Satellite Attitude Stability. Acta Astronautics, 1997,41(11):739-750
    74 J.C. Doyle. Multivariable Feedback Systems Design Concepts for a Classical/Modem Synthesis. AC, 1981,26(1):4-16
    75童调生.多台直流电动机同步协调运转的最优控制.电工技术学报, 1987, 2(1):42-47
    76韩绍坤,张立华.多电机传动系统的典型功能模块及控制算法分析.电机与控制学报, 1999,3(4):255-257
    77张井岗,曾建湖,孙志毅.直流电动机调速系统的内模控制.电机与控制学报, 1998, 2(6):126-128
    78范俭.关于双机传动机械系统定速比控制及同步控制的研究.[东北大学工学博士论文]. 1993:35-72
    79李耿铁,王字融.数控机床多轴同步控制方法.制造技术与机床, 2000,50(5): 23-25
    80赵春雨,朱洪涛,闻邦椿.多机传动机械系统的同步控制.控制理论与应用, 1999,16(2):179-183
    81李友泉,詹永麒.利用PLC和变频器进行速度同步控制.电气传动, 2000,30(5): 6-7
    82周志钊.多电机同步传动系统变频器网络智能控制算法.[山东工业大学工学硕士论文].1999:5-11
    83文方,姜孝华.多级电机同步驱动控制系统.电气传动, 2000, 30(5):14-17
    84吴慎言,高建会.模型参考自适应控制应用在多电机同步拖动中的初步研究.电气自动化, 1989,(1):17-19
    85陈素波,李航,王云涛等.PWM变频调速在多电机同步传动系统中的应用.电气自动化,1992,(2):8-10
    86 Yang G, Chin T.H. Adaptive-Speed Identification Scheme for a Vector-Controlled Speed Sensorless Inverter-Induction Motor Drive. IEEE Trans.Industry Applicat., 1993,29(4):820-825
    87 H.Kubota, K.Matsuse. Speed Sensorless Sield-Oriented Control of Induction Motor with Rotor Resistance Adptation. IEEE Trans.Industry Applicat., 1994,30(5):1219-1224
    88 K.Tungpimolrut. F.Z.Peng. Robust Vector Control of Induction Motor without Using Stator and Rotor Circuit Time Constants. IEEE Trans.Industry Applicat., 1994,30(5):1241-1246
    89 Peng F Z, T.Fukao. Robust Speed Idetification for Speed-sensorless Vector Control of Induction Motors. IEEE Trans.Industry Applicat., 1994,30(5):1234-1240
    90 Kim Y R, Sul S K. Speed Sensorless Vector Control of induction Using Extend Kalman Filter. IEEE Trans.Industry Applicat., 1994,30(5):1225-1233
    91闻邦椿,赵春雨,苏东海,等.机械系统的振动同步与控制同步.北京:科学出版社,2003:2-10
    92大重集团公司设计研究院.FZ3-1O型翻车机安装调试大纲.大连:大重集团公司设计研究院, 1996:15-28
    93杨长殴.起重机械.北京:机械工业出版社, 1989:56-66
    94 G.Voss, H.J. Loewe. Measurement of Composite Loads on Rail Vehicle Running Gear. Rail International, 1987,18(4):33-38
    95 F.I.Litvin, Pernez Rahman, R.N.Goldrich, Mathematical Models for Synthesis and Optimization of Spiral Bevel Gear Tooth Surfaces.NASA Contractor Report 3533,NASA Scientific and Information Office,1982:3-6
    96杨宏,魏欣.提高冶金设备低速重载齿轮寿命的探讨.重型机械, 2004,(4):10-12
    97张潇云,周新建.改进煤矿机械传动齿轮失效的途径.润滑与密封, 2004,161(1): 65-67
    98 M.Amabili, M.Pellegrini, F.Righi. Effect of Concentrated Masses with Rotary Inertia on Vibrations of Rectangular Plates. Journal of Sound and Vibration, 2006, 295(8):1-12
    99蒋伟.机械动力学分析.北京:中国传媒大学出版社, 2005:11-28
    100 Sam Anand, Nicholas E. Huffer. Transformation algorithms for objects represented by quadtrees.Proceedings of the Industrial Engineering Research Conference, Los Angeles, 1993: 684-688
    101张德华,吕敏.超声波式物位测量.计量与测试技术, 2006, 33(1):16
    102吴序堂.齿轮啮合原理.北京:机械工业出版社, 1982,11:15-22
    103求是科技.Visual C++ 6.0程序设计人入门到精通.北京:人民邮电出版社, 2006,1
    104高伟,姜水生.分段曲线拟合与离散度加权的数据误差处理方法.中国测试技术,2005,31(6): 55-56
    105 Ohsumi, Akira. Online Detection of Pulse Sequence in Random Noise Using a Wavelet. IEEE Transactions on Signal Processing, 1999, 47 (9): 2526-2531
    106郑德忠,何群.基于新型广义预测算法的含氧量软测量研究.电子学报, 2006,34(12): 2255-2258
    107何群.基于广义预测控制的锅炉测控系统研究.[燕山大学工学博士论文]. 2005:102-107
    108张玉忠,王铁.转炉倾动装置的优化设计.机械传动,2006,30(5):88-90
    109钟一谔.转子动力学.北京:清华大学出版社, 1987,11:16-37
    110 Peng J P, Ding E J, Ding M. Synchronizing Hyperchaos with a Scalar Transmitted Signal.Physical Review Letters, 1996,76(2): 904-907.
    111 Kocarev L, Parlit U. Generalized Synchronization, Predictable, and Equivalence of Unidirectionally Coupled Dynamical Systems. Physical Review Letters, 1996,76(3): 1816-1819
    112 Pecora L M, Carroll T L.Synchronization of Chaotic Systems.Physical Review Letters, 1990,64(2): 821-824.
    113 Viera M d S, Lichtenberg A J, Lieberman M A.Synchronization of Regular and Chaotic Systems.Physics Review A, 1992,46(12):7359-7362
    114 Cuomo K M, Oppenheim A V. Circuit Implementation of Synchronized Chaos with Applications to Communications.Physical Review Letters, 1993,71(7): 65-68
    115ōmerMorgül.On the Synchronization of Logistic Maps.Physics Review A,1998,247(10): 391-396
    116 Jackson E A,Grosu I.An Open-plus-closed-loop(opcl) Control of Complex Dynamical Systems. Phsica D,1995, 85(1): 1-9
    117 Chen Li-Qun.An Open-plus-closed Control for Discrete Chaos and Hyperchaos.Physics Lettes A, 2001,281(4): 327-333
    118张保银,岳毅宏,韩文秀,等.基于开环-闭环控制的离散动力系统同步研究.控制与决策,2005,20(1):51-54
    119范俭,李颖.用神经元评判误差的自适应同步控制.沈阳建筑工程学院学报,1996,12(3):273-277
    120 Zheng Dezhong,He Qun.A New Fast Algorithm of Weighted Generalized Predictive Control with Filter.The Chinese Journal of Electronics,2006,15(2): 242-245
    121李军伟.仿真转台电液伺服系统及其中框同步控制技术的研究. [哈尔滨工业大学博士学位论文].2003,6:61-66
    122 Kevin M,Passino,Stephen Yurkovich.Fuzzy Control.Beijing:Tsinghua University Press,2003:65-73
    123李士勇.工程模糊数学及应用.哈尔滨:哈尔滨工业大学出版社, 2004:155-177
    124李国勇.智能控制及其MATLAB实现.北京:电子工业出版社, 2005:350-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700