用户名: 密码: 验证码:
交流伺服系统可重构和网络化控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于采用传统控制方法的交流伺服系统存在性能单一、应用范围窄和开放性差的问题,采用专用网络实现的网络化交流伺服系统存在成本高和开放性较差的缺点,为了降低系统的成本、拓宽系统的应用范围和增强系统的开放性,本文以交流伺服系统可重构和网络化控制为研究内容,进行了以下方面的研究。
     交流伺服系统策略可重构控制器的研究。本文详细分析了一些简单、具有不同特点以及容易实现的控制策略,深入讨论了它们的特点及其应用场合;然后结合交流伺服系统的一般性能要求和应用环境,设计了控制器的策略重构流程和规则。仿真和实验结果都验证了各种控制策略性能特点的正确性、策略重构规则的合理性以及策略重构化控制的可行性。
     通用网络协议分析以及消息延时特性的研究。为了便于将通用网络用于网络化交流位置伺服系统和有效地消除网络延时对系统性能的影响,本文首先从理论上分析了目前应用较广的三种网络——以态网(Ethernet)、控制网(ControlNet)和控制局域网(Control Area Network, CAN)的协议;然后总结出了由它们实现的网络系统的消息传输延时、系统节点数和消息发送周期之间的关系;最后给出了基于CAN总线的网络化交流位置伺服系统的网络结构,这种结构可以有效地降低系统的成本和增强其开放性。
     提出了一种面向CAN总线网络的基于消息生命期的动态分布式调度方法,分析了该方法的实现原理和消息完全可调度的必要条件。由实验结果得出,提出的消息调度方法能确定性地满足消息生命期的要求,使网络系统具有高灵活性、支持多种类型的消息在网络中传输和支持网络带宽的动态分配的特点。
     提出一种获取系统状态反馈最大允许时间间隔的方法,以此结合消息调度方法可实现对采用通用网络构建的交流位置伺服系统进行网络化控制。该方法得到的状态反馈最大允许时间间隔保守性较小。仿真和实验结果验证了该方法的正确性。
     以策略重构规则、消息调度方法和系统状态反馈最大允许时间间隔求取方法为基础,本文以DSP-TMS320LF2407A为核心器件设计了交流伺服系统策略可重构和网络化控制的实验平台,并设计了系统的控制软件。实验结果表明,与非网络化位置控制系统相比,它们具有相似的位置控制性能。
Because the AC servo systems based on the conventional control method can only satisfy the single aspect of performance, its application adaptability and openess will be limited. Currently, the proprietary networked control AC servo systems cost is high, and its open ability is poor. Aiming at reducing the system’s design cost, obtaining the wide application range and a good openess, this dissertation is focused on the study of the reconfigurable and networked control of AC servo systems, and the main contents are as follows.
     The study of the reconfigurable controller of AC servo systems is done. In this dissertation, the reconfigurable controller adopting some simple control strategies with different characteristics, were theoretically analyzed in detail. According to the performance requirements and the application environment of AC servo systems in application, the reconfigurable rules of control strategies are presented. The characteristics of control strategies are tested by the experiment and simulation results. The rationality of reconfiguration rules and validity of the reconfigurable control is proven
     The analysis of communication protocol and the study on network-induced delay are done. In order to use some general communication networks in AC servo systems and eliminate the effect coming from the network-induced delay, some communication networks, such as Ethernet, ControlNet and CAN network, were analyzed in this dissertation. The relationship between the network-induced delay, the number of node, and the transmission period of messages is discovered. The configuration of the networked AC servo systems based on CAN has been setup, and it can reduce cost and enhance the open ability.
     A distributed dynamic message scheduling strategy based on the deadline of the message was proposed in CAN-based networked control systems. The realization principle of message scheduling strategy and the necessary condition of full schedulability of messages were investigated in detail. According to some experimental results, this strategy can satisfy some necessary performance requirements of the networked control systems, such as the deadline requirement, promoting system flexibility, the fairness of bandwidth allocation, supporting all kinds of messages and so on.
     A new method that can obtain the status feedback maximum allowable time interval(MATI) with less conservation was proposed. Based on this and the message scheduling strategy, we can control the networked AC servo systems deterministicly and obtain the expected system performance.Finally, the correctness of this method have been verified by simulation and experiment.
     On the basis of the analysis of the reconfigurable controller, the study of message scheduling strategy and the computation method of the MATI, the hardware platform on the reconfigurable and networked control of AC servo systems with two motors has been constructed and the control software has also been designed. According to the experimental results, they have almost the same performance as non-networked AC servo position control systems.
引文
[1] Wei S., Yao W. An adaptive fuzzy control for AC servo system. In: Proceedings of the Fifth International Conference on Electrical and Machines Systems, 2001. 782~786.
    [2] Sang H. K., Lark K. K. Design of a neuro-fuzzy controller for speed control applied to AC Servo motor. In: IEEE International Symposium on Industrial Electronics, 2001(1). 435~ 440
    [3] Sudhoff S. D., Corzine K A, Hegner, H.J. A flux-weakening strategy for current regulated surface-mounted permanent–magnet machine drives. IEEE Transactions on Energy Conversion, 1995, 10(3): 431 ~437
    [4] Chung-Jin K., Han W. Y. Lee Chang-Goo. Speed control of PMSM using a robust adaptive controller. In: Proceedings of the 40th SICE Annual Conference. International Session Papers, 2001. 12 ~15
    [5] Salvatore L., Stasi S. Adaptive position control of a PMSM drive. In: The 20th International Conference on Industrial Electronics control and instrumentation, 1994(3). 2079~2085
    [6] Low K. S., Lim K. W., Rahman, M.F. A micraprocessor based fully digital ac servo drive. Microprocessors and Microsystems, 1997,20(7): 429~436
    [7] Guoxin Z., Yumei G., Qingding G. Design of the demodulation method of position and rotate speed signals for PMSM servo system. In: The Sixth International Conference on Electrical Machines and Systems, 2003(2). 506~509
    [8] Yujie G., Lipei H, Muramatsu, M. Research on inertia identification and auto-tuning of speed controller for servo system, In: Proceedings of the Power Conversion Conference, PCC Osaka, 2002(2). 896 ~901
    [9]郭庆鼎,王成元,交流伺服系统.北京:机械工业出版社,第1版, 1998. 81~85
    [10] Imecs M., Bikfalvi P., Nedevschi S., et al. Implementation of a configurable controller for an ac drive control: a case study. Field-Programmable Custom Computing Machines, In: IEEE Symposium on, 2000. 323~324
    [11] Qian L., Cartes D., Hui L., et al. A reconfigurable induction motor drive with harmonic cancellation feature. Electric Ship Technologies Symposium, 2005. 93~98
    [12] Parsa L., Toliyat H. A. A self reconfigurable electric motor controller for hybrid electric vehicle applications. In: The 29th Annual Conference of the IEEE on Industrial Electronics Society, 2003(1). 919~924
    [13] Yu S. J., Seung K. S., Schulz, S., et al. Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle. In: The 38th IAS Annual Meeting on Industry Applications Conference, 2003(3). 1458~1463.
    [14] Yu S. J., Seung K. S., Schulz, S., et al. Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle. IEEE Transactions on Industry Applications, 2005,42(1): 46 ~51
    [15] Dubey R., Agarwal P., Vasantha M. K. AC drive as a peripheral for system-on-chip applications. In: India Annual Conference, 2004. Proceedings of the IEEE INDICON 2004, 2004(1), 1~5
    [16] Dubey R., Agarwal P., Vasantha M. K. AC drive system on chip a peripheral based approach. In: Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, 2005(3). 1877~1882
    [17] Kalte H., Langen D., Vonnahme E., et al. Dynamically reconfigurable system-on- programmable-chip. In: Parallel, Distributed and Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on 9-11 Jan, 2002. 235~242.
    [18] Józwiak L., Slusarczyk A., Chojnacki A. Fast and compact sequential circuits for the fpga-based reconfigurable systems. Journal of Systems Architecture, 2003, 69(4): 227~246
    [19] Doumar A., Ito H. Testing FPGA based reconfigurable system within run-time applications. In: Microelectronics, 2001. ICM 2001 Proceedings. The 13th International Conference on, 2001. 234~236
    [20]刘敬猛,王田苗,魏洪兴等.基于FPGA的可重构交流伺服系统硬件设计.《机床与液压》,2005(4): 1~4
    [21] Wolfgang S., Peter Lutz. Designing applications for an OSACA control. In: Proceedings of the International Mechanical Engineering Congress and Exposition, Dalles/USA, 1997.
    [22] Yodyium. T., Mo Y. C. Control methodologies in networked control systems. control engineering practice, 2003(11): 1099~1111
    [23] Mo Y. C., Yodyium T. Network-Based control systems: A tutorial. In: the 27th Annual conference of the IEEE Industrial Electronics Society, 2001(3). 1593~1602
    [24] Zhang W., Michael S. B., Stephen M. P. Stability of networked control systems. IEEE Control systems Magazine, 2001, 21(1): 84~99
    [25] Biegacki S., vanGompel D.. The application of DeviceNet in process control. ISATransactions, 1996, 35(2): 169~176
    [26] Eccles L. H. A smart sensor bus for data acquisition. Sensors,1998, 15(3): 28~36.
    [27] Gibson L. D. Autonomous control with peer-to-peer I/O networks. Sensors, 1995, 12(9): 83~90.
    [28] Ray B. Introduction to networking for integrated control systems. IEEE Control Systems Magazine, 1989, 9(1): 76~79
    [29] Schickhuber,G.., McCarthyt O. Distributed fieldbus and control network systems. Computing and control Engineering, 1997, 8(1): 21~32
    [30] Song D., Divoux T., Lepage F. Design of the distributed architecture of a machine-tool using FIP fieldbus. In: The Proceedings of IEEE Int’l Conf, on Application-specific Systems, Architectures, Processors, 1996. 250~260
    [31] Overstreet J. W., Tzes A. An Internet-based real-time control engineering laboratory. IEEE Control Systems Magazine, 1999,19(5): 19~34
    [32] Tipsuwan Y., Chow M. Y. Network-based controller adaptation based on Qos negotiation and deterioration. In: The 27thannual conference of the IEEE industrial electronics society (IECON01), 2001(3). 1794~1799
    [33] Tipsuwan Y., Chow M. Y. Gain adaptation of networked mobile robot to compensate QoS deterioration. In: The 2th annual conference of the IEEE industrial electronics society (IECON 02), 2002(4). 3145~3155
    [34] Tarn T. J., Xi N. Planning and control of internet-based teleoperation. In: Proceedings of SPIE: Telemanipulator and telepresence technologies, 1998(3254): 189~193
    [35]云利军,孙鹤旭,雷兆明等.运动控制网络的研究现状及发展趋势.控制工程, 2006, 13(4): 289~293
    [36]吴乃优,吴小洪,王晓初等. SERCOS协议和同步控制方法.电气传动,1999,6: 31~33
    [37]康存锋,陈卫福,黄旭东.基于SERCOS技术实现高速高精度运动控制.设计与研究, 2002, 6: 8~9
    [38]周文华,赵雁南,王家钦.SERCOS总线及其在机器人系统中的应用.电子技术应用,2001,10: 34~36
    [39]黄怡暾. PC-Based SSCNET运动控制系统与发展趋势.工业控制算机,2003, 16(7):62~64
    [40]朱国力,龚时华,段正澄.基于MACRO总线的开放式凸轮轴磨床数控系统.制造业自动化,2000,22(8): 32~34
    [41]朱国力,段正澄. MACRO协议及在开放式数控中的应用.制造业自动化, 2000,22(9): 23~25
    [42] Jimmy K. Delay Modeling And Controller Design for Networked Control Systems. [PhD dissertation], Department of electrical and Computer Engineering, University of Toronto, 2003
    [43] Marino P., Nogurira J., Siguenza C. The PROFIBUS Formal Specification: A Comparison Between Two FDTs. Computer Networks, 2001, 37: 345~362
    [44] Christian F., Fetzer C. Probabilistic internal clock synchronization. In: The Proceedings of the Thirteenth Symposium on Reliable Distributed Systems,1994(7). 783~788
    [45] Van O. J. Measuring and Modeling Computer Networks. [PhD dissertation], Delft University of Technology, 1993
    [46] Schedl A. V. Design and Simulation of Clock Synchronization in Distributed Systems. PhD dissertation], Technique University Wien, Institute for Technique information, 1996
    [47] Xiang H. M., ying J. X. An improved online delay evaluation for networked control systems. In: IEEE Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004(2). 1324~1329.
    [48] Nilsson J., Real-time Control Systems with Delay. [PhD dissertation], Dept. Automatic Control, Lund Institute of Technology, 1998.
    [49] Luck R., Ray A. An observer-based compensator for distributed Delays. Automatic, 1990, 26(5): 903~908
    [50] Luck R., Ray A. Experimental verification of a delay compensation algorithm for integrated communication and control systems. International Journal of Control, 1989, 59(6): 1357~1372.
    [51] Chan H. Closed-loop control of systems over a communications network with queues. International Journal of control, 1995, 62(3): 493~510
    [52] Walsh G. C., Beldiman O. M., Bushnell L. Asymptotic behavior of networked control systems. In: Proceedings of 1999 IEEE international conference on control applications ,1999(2) . 1448~1453
    [53] Walsh G. C., Beldiman O. M., Bushnell L. Stability analysis of networked control systems. In: Proceedings of the 1999 American control conference, San Diego, CA, 1999(4). 2876~2880.
    [54] Halevi Y., Ray A. Integrated communication and control systems: part I—analysis. Journal of Dynamic Systems. Measurement and Control, 1988(110): 367~373
    [55] Aong S. H. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Transactions on Control Systems Technology, 1995, 3(2): 225~230
    [56] Qian X. L., Stability analysis of networked control system, In: Proceedings of the 5th Word Congress on Intelligent Control and Automation, 2004(2). 1316~1318
    [57] Walsh G. C., Ye H., Bushnell L. Stability analysis of networked control systems, In: Proc. Amer. Control Conf. San Diego. CA, 1999(4). 2876~2880.
    [58] G?ktas F. Distributed control of systems over communication networks, [PhD dissertation], University of Pennsylvania.,
    [59] Almutairi N. B., Chow M.Y, Tipsuwan Y. Network-Based controlled DC motor with fuzzy compensation. In: The 27th annual conference of the IEEE industrial electronics society (IECON O1), 1999(3). 1844~1849
    [60] Tindell K., Burns A., Wellings A.. Calculating controller area network (CAN) message response times. Control Eng. Practice, 1995, 3(8): 1163–1169.
    [61] Tindell K., Burns A. Guaranteeing message latencies on control area network (CAN). In: Proc. 1st Int. CAN Conf., Mainz, Germany, 1994. 1~11
    [62] G. Cena, A.Valenzano. An Improved CAN fieldbus for industrial applications. IEEE transactions on industrial electronics, 1997, 44(4): 533-564
    [63] Cena G., Valenzano A., A distributed mechanism to improve fairness in CAN networks. IEEE International Workshop on Factory Communication Systems, 1995. 3~11
    [64] Cena G., Valenzano A. Delay analysis of priority promotion systems. Computer Communications, 2000(23): 1252~1262.
    [65]秦忆,李叶松等.现代交流伺服系统.华中理工大学出年, 1995. 81~85
    [66] Nyman P. O., Sulkowsk W. PMSM robust current control with adaptive tuning of axis decoupling, In: Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, 2003(3). 2239 ~2244
    [67] Faa J. L., Sheng L. Chiu., Kuo K. S. Adaptive control of PM synchronous motor drive using VSS approach. In: Industrial Electronics, Control, and Instrumentation, 1996., In: Proceedings of the 1996 IEEE IECON 22nd International Conference on, 1996 (3). 1740~1745
    [68] Pyoung H. K., Sa H. S., Hyung L. B., et al. Speed control of AC servo motor using neural networks. In: Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference on, 2001(2). 691~ 694
    [69] Gou J. W., Chuan T. F., Chang, K. J. Neural-network-based self-tuning PI controllerfor precise motion control of PMAC motors. Industrial Electronics, IEEE Transactions on, 2001, 48(2): 408~415
    [70] Yadaiah N., Kumar N. R., Das G. T. R. Comparison of Conventional, Fuzzy Logic and Neural Based HBPWM Current Controllers. In: Neural Networks, 2006. IJCNN '06. International Joint Conference on, 2006. 2986 ~2992
    [71] Uddin M. N., Rahman M. A. Fuzzy logic based speed control of an IPM synchronous motor drive, In: Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, 1999(3) . 1259~1264
    [72] Hyung T., Moon, H. S., Myung J. Y. A Discrete-time predictiove current control for PMSM, IEEE Transactions on power electronics,vol.18, No.1,January 2003, 18(1) :464~472
    [73] Kennel R., El-kholy E., Mahmoud S., et al. A simple high performance current control scheme for induction motor drives. In: Industrial Electronics Society, 2005. IECON 2005. 32nd Annual Conference of IEEE, 2005. 1762~1767
    [74] Novotny D. W., Lipo T. A. Vector control and dynamics of ac drivers. Oxford: clarendon Press, 1996. 371~380
    [75]胡寿松.自动控制原理.北京:国防工业出版社,第三版,1994. 370~374
    [76]邓忠华.高性能全数字交流伺服系统的研究. [博士学位论文],华中科技大学图书馆, 1995
    [77] Ellis G. PDFF: An Evaluation of a Velocity loop Control Method. Kollmorgen
    [78] Ohm D. Y. A PDFF controller for tracking and regulation in motion control. In: Proceedings of 18th PCIM conference, Intelligence Motion, Philadephia,1990. 26~36
    [79] SERVOSTAR S-and CD-Series Velocity Tuning Algorithms. Danaher, Motion Kollmorgen, 2002
    [80] Wen C. Y., Gou J. W. Discrete sliding mode control with forgetting dynamic sliding surface. Mechatronics , 2004, 14: 737~755
    [81] Ming G. B., Hong T. Z. Robust control methods for PM synchronous motor. In: Proceedings of the 5th word Congress on Intelligent Control and Automation, 2004. 4437~4440.
    [82] Sarpturk S. Z., Iatefanopulos Y., Kaynak O. On the stability of discrete-time sliding mode control systems. IEEE Trans, Automat. Contr., 1987, 32(10): 930~932.
    [83]金钰.伺服系统设计指导.北京:北京理工大学出版社, 2000. 10~14.
    [84] Ray C., Hong S. H., Lee S. Discrete-event/continuous-time simulation of distributeddata communication and control systems, Transactions of The Society for Computer Simulation, 1998, 5: 71~85
    [85] Hirai K., Satoh Y. Stability of a system with variable time delay, IEEE Transactions on Automatic control, AC-25, 1980, 25(3): 552~554
    [86] Larry L. P., Bruce S. D.计算机网络.叶新铭等译.北京:机械工业出版社,第1版, 2002. 74~85
    [87] Lian L. F. Analysis, design, modeling, and control of networked control systems. [PhD dissertation]. Mechanical Engineering of the University of Michigan, 2001
    [88] CAN specification version 2.0. 1991, Robert Bosch.
    [89] Hong H. L., Ui H. J. Design of distributed scheduler on CAN for real-time networking, In: Science and Technology, 2001. KORUS '01. Proceedings. The Fifth Russian-Korean International Symposium on, 2001(3). 22 ~25
    [90] Luis A. M., Panos J. A. On the model-based control of networked systems. Automatic, 2003, 39: 1837~1843
    [91] Petros A., Ioannou J. S. Robust Adaptive Control. Prentice-Hall Inc, 1996. 174~179
    [92]廖晓昕.稳定性的理论、方法和应用.武汉:华中理工大学出版,1999. 39~63
    [93] Hong S. P., Yong H. K., Dong S. K., et al. A scheduling method for network-based control systems. IEEE Transactions on control systems technology, 2002, 10(3): 318~330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700