用户名: 密码: 验证码:
薄壁件数控侧铣若干基础理论、实验及集成技术问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁件在航空航天、机械、土木等领域应用非常广泛,许多重要零部件(如航空发动机叶片等)的先进制造技术涉及军事和重要民用领域的关键技术,被各国视为机密而对外严格封锁,我国在这方面远落后于西方制造强国。由于薄壁件低刚度特性和一些零部件复杂不可展曲面形状使得制造难度极大。围绕薄壁件高精度加工需求和提高加工效率进行数控加工基础理论与应用研究具有重大的理论意义和工程应用价值。
     本文综述了国内外研究现状,采用理论分析、有限元和切削实验相结合的方法,以矩形薄板、航空叶轮叶片的数控侧铣为对象,开展了薄壁件数控侧铣的力学和数控基础理论、有限元模拟和切削实验综合分析研究,取得了以下研究成果:
     1.通过将移动载荷作用问题转化为固定载荷作用问题,建立起移动集中载荷作用下悬臂矩形板对称弯曲和非对称弯曲的力学模型,移动集中载荷作用下悬臂矩形板的对称和非对称弯曲挠度试验函数,进而获得矩形薄板侧铣加工变形的近似理论解。有关结果与有限元预测结果以及切削实验测量结果吻合较好。
     2.提出螺旋立铣刀侧铣加工的切削力模型,通过建立铣削力系数与切削用量的多项式模型,利用四因素回归正交实验法确定了模型常量。建立了进行精确变形预测和误差控制分析的基础。
     3.提出冗余误差控制三次NURBS曲线直接插补算法,通过引入进给倍率因子,适度提高插补速度可改善小曲率情形误差过度冗余,提高了加工效率。实验表明该算法对加工精度和加工效率具有综合协调控制能力。提出了三轴空间刀具半径补偿算法,实验表明算法正确有效。
     4.提出了倾斜摆头型和带角度铣头五轴机床等含特殊铣头的五轴后置处理算法,实验表明算法正确可靠。提出了锥形球头铣刀侧铣加工不可展直纹面的刀位优化算法,实验表明建立的算法可极大提高不可展曲面侧铣加工精度。
     5.分别建立了矩形薄板的单轴侧铣加工变形的有限元数值预测模型和航空叶轮叶片的五轴侧铣加工变形的有限元数值预测模型,并提出了控制变形的刀轨优化误差补偿方法。实验表明所建立的加工变形预测模型正确,误差补偿方法有效。
     有关研究理论成果为薄壁件加工变形预测与刀轨优化的分析和应用提供了理论指导,部分研究成果已经实现实际应用。
Thin-walled components are widely used in the field of aeronautic and aerospace industry, mechanical engineering industry and civil engineering industry, etc. Advanced manufacturing technologies of various important components involve key technologies for military use and important civil use, which are locked as national privacy in every country. For this case our country has fallen behind those west manufacturing power countries. Due to the characteristic of poor rigidity and some due to complex non-developed surface shape, it is tremendous difficult to ensure thin-walled components machining accuracy using the traditional machining craft techniques. So, surrounding the demand of high machining quality and high machining efficiency of thin-walled components, it has great academic and engineering values for developing the numerical control fundamental research and application.
     Based on a survey of domestic and foreign research status, by combining theoretical analysis, FEM and machining experiment study methods, and taking peripheral milling process with a thin-walled rectangular plate and an impeller blade as the subject studied, the integrated research on mechanics and NC basic theory, FEM simulations and cutting experiments for thin-walled components peripheral milling are developed in this dissertation. The research achievements are summarized as the following:
     1. By means of transformation from a moveable loading problem to a fixed loading problem, the thin-walled cantilever rectangular plate symmetrical and nonsymmetrical bending models, flexibility testing functions have been proposed. Thus proximative theoretical solutions are obtained. The corresponding results are good in agreement with FEM simulation results and experimental results.
     2. The mechanistic model of spiral end milling has been built. A multinomial model between milling force coefficients and quantities in cutting is set up. The milling experiment by means of regression-orthogonal method with four factors is designed to confirm constants of cutting force model. The work is the perfect basis for deflection prediction and error control and analysis.
     3. An interpolation algorithm for Non Uniform Rational B-Spline(NURBS) curves to control redundancy errors is proposed. A feedrate factor is introduced to improve errors redundancy by properly raising feedrate when the instantaneous curvature was too small, and the machining efficiency is increased. Experimental results demonstrate the combinative capability of the proposed algorithm for compatibility controling machining quality and efficiency. Testing results show that the proposed algorithm is highly effective and correct.
     4. Post processing algorithms are deduced for five-axis CNC machines with the titling milling head and with the angle milling head. The correctness and effectiveness of the proposed post processing algorithms is verified by means of a cutting experiment. Tool path optimization algorithms are developed for flank milling undevelopable ruled surfaces. Experimental results show that the proposed algorithms can improve machining accuracy greatly in peripherial milling undevelopable surfaces.
     5. FEM models for predicting machining deflections are established for single axis side milling a thin-walled rectangle plate and five-axis peripheral milling an impeller blade, respectively. The errors compensation strategies of optimizing tool paths are also proposed to control machining deflections. Testing results show that the models for predicting machining deflections are reliable and the strategies for compensating deflection errors are effective.
     The related theoretical achievements of this paper provide the theoretical guidance for prediction of machining deflections and optimization of tool paths for thin walled components. And some have been realized practical application.
引文
[1] S. Smith. An overview of modeling and simulation of the milling process[J].Tras ASME. J. Eng. Ind., 1991, 113 (5):169-175.
    [2]王立涛,柯映林,黄志刚.航空铝合金7050-T7451铣削力模型的实验研究[J].中国机械工程, 2003, 14(19): 1684-1686.
    [3]张幼桢.金属切削原理及刀具[M].北京:国防工业出版社, 1989.
    [4] H. Ernst, M. E. Merchant. Chip formation, friction and high quality machined surfaces in“Surface Treatment of Metals”[J]. American Society of Metals, 1941, 29(2): 299-335.
    [5] M. E. Merchant. Basic mechanics of the metal cutting process [J]. Journal of Applied Mechanics, 1944, 67: 168-175.
    [6] M. E. Merchant. Mechanics of the metal cutting process [J]. Journal of Applied Physics, 1945, 16(6): 318-324.
    [7] E. H. Lee, B. W. Shaffer. The theory of plasticity applied to the problem of machining [J]. Journal of Applied Mechanics, 1951, 18(4): 405-441.
    [8] P. L. B. Oxley. The mechanics of machining [M]. Ellis Horwood Limited, 1989.
    [9] E. Usui, M. Hirota, A. Masuko. Analytical prediction of three dimensional cutting process: Part 1, basic cutting model and energy approach [J]. Journal of Engineering for Industry, 1978, 100(2): 222-228.
    [10] E. Usui, A. Hirota. Analytical prediction of three dimensional cutting process: Part 2 chip formation and cutting force with conventional single-point tool [J]. Journal of Engineering for Industry, 1978, 100(2): 229-235.
    [11]黄志刚,柯映林,王立涛.基于正交切削模拟的零件铣削加工变形预测研究[J].机械工程学报, 2004, 40(11): 117-122.
    [12]张智海,郑力,李志忠,等.基于铣削力/力矩模型的铣削表面几何误差模型[J].机械工程学报, 2001, 37(1): 6-10.
    [13] H. Z. Li, X. P. Li. Milling force prediction using a dynamic shear length model [J]. International Journal of Machine Tools & Manufacture, 2002, 42: 277-286.
    [14] N. Fang. An improved model for oblique cutting and its application to chip-control research [J]. Journal of Materials Processing Technology, 1998, 79: 79-85.
    [15]王立杰,方子良.斜角切削的理论分析[J].南京林业大学学报, 2000, 24(6): 51-54.
    [16]顾立志,卢碧红,马金东.斜角切削剪切角的计算与测定[J].机械科学与技术, 1996, 15(3): 423-426.
    [17] F. Koenigsberger, A. J. P. Sabberwal. An investigation into the cutting force pulsationsduring milling operations [J]. International Journal of Machine Tool Design and Research, 1961, 1: 15-33.
    [18] W. A. Kline, R. E. Devor, J. R. Lindberg. The prediction of cutting forces in end milling with application to cornering cuts [J]. International Journal of Machine Tool Design & Research, 1982, 22(1): 7-12.
    [19] W. A. Kline, R. E. Devor, I. A. Shareef. The prediction of surface accuracy in end milling [J]. Transactions of ASME Journal of Engineering for Industry, 1982, 104: 272-278.
    [20] J. W. Sutherland, R. E. Devor. An improved method for cutting force and surface error prediction in flexible end milling systems [J]. Transactions of ASME Journal of Engineering for Industry, 1986, 108: 269-279.
    [21] J. S. Tsai, C. L. Liao. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces [J]. Journal of Materials Processing Technology, 1999, 94: 235-246.
    [22] Y. Altintas, A. Spence. End milling force algorithms for CAD systems [C]. Annals of the CIRP, 1991, 40(11): 31-34.
    [23] X. W. Liu, K.Cheng, D. Webb. Prediction of cutting force distribution and its influence on dimensional accuracy in peripheral milling [J]. International Journal of Machine Tools & Manufacture, 2002, 42: 791-800.
    [24] E. Budak, Y. Altintas. Modeling and avoidance of static form errors in peripheral milling of plates [J]. International Journal of Machine Tools & Manufacture, 1995, 35(3): 459-476.
    [25] E.Budak. Mechanics and dynamics of milling thin walled structures[D]. Vancouver, Canada: The University of British Columbia, 1994.
    [26] A. Larue, B. Anselmetti. Deviation of a machined surface in flank milling [J]. International Journal of Machine Tools & Manufacture, 2003, 43(2): 129-138.
    [27] M. Wan, W. H. Zhang. Efficient algorithms for calculations of static form errors in peripheral milling [J]. Journal of Materials Processing Technology, 2006, 171: 156-165.
    [28]武凯,何宁,姜澄宇,等.立铣空间力学模型分析研究[J].南京航空航天大学学报, 2002,34(6): 553-556.
    [29] S.T. Chiang, C.M.Tsai, A. C. Lee. Analysis of cutting forces in ball-end milling [J]. Journal of Materials Processing Technology, 1995, 47(3-4): 231-249.
    [30] R. Zhu, S. G. Kapoor, R. E. DeVor. Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces [J]. Journal of Manufacturing Science and Engineering, 2001, 123(3): 369-379.
    [31] W. S. Yun. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[J].International Journal of Machine Tools & Manufacture, 2001, 41:463-478.
    [32]冯志勇.一种新的铣削力模型[J].天津大学学报,1998 , 31 ( 3 ) : 314-320.
    [33] P.Albrecht. New development in the theory of the metal-cutting process:Part I the ploughing process in metal cutting [J]. Journal of Engineering for Industry, 1960, 82: 348-358.
    [34] W. J. Endres, R. E. Devor, S. G. Kapoor. A dual-mechanism approach to the prediction of machining force, Part 1: Model development [J]. Journal of Engineering for Industry, 1995, 117: 526-533.
    [35] E.Budak,Y. Altintas, E. J. A. Armarego. Prediction of milling force coefficients from orthogonal cutting data [J]. Journal of Manufacturing Science and Engineering, 1996, 118: 216-224.
    [36] J. Gradisek, M. Kalveram, K. Weinert. Mechanistic identification of specific force coefficients for a general end mill [J]. International Journal of Machine Tools & Manufacture, 2004, 44(4): 401-414.
    [37] D. Montgomery, Y. Altintas. Mechanism of cutting force and surface generation in dynamic milling [J]. Journal of Engineering for Industry, 1991, 113(2): 160-168.
    [38] E. J. A. Armarege, N. P. Deshpande. Force prediction model and CAD/CAM software for helical tooth milling processes. Part I: Basic Approach and Cutting Analyses [J]. International Journal of Production Research, 1993, 31(8): 1991-2009.
    [39] E.J.A. Armarege, N. P. Deshpande. Force prediction model and CAD/CAM software for helical tooth milling processes. Part II: Basic Approach and Cutting Analyses [J]. International Journal of Production Research, 1993, 31(8): 2319-2336.
    [40] N. M. Kulkarni, A. Chandra, S. S. Jagdale. A dynamic model for end milling using single point cutting theory [J]. Journal of Manufacturing Science and Engineering, 1996, 118: 272-278.
    [41]王卫平,张发英.基于最值及平均值的切削力对称模糊预测[J].工具技术,1993, 33(11): 14-16.
    [42] T. Szecsi. Cutting force modeling using artificial neural networks [J]. Journal of Materials Processing Technology, 1999, 92(93): 344-349.
    [43]陈统坚,王卫平,周泽华.铣削过程的约束型智能控制研究[J].华南理工大学学报,1994, 22(4): 90-96.
    [44] J. F. Briceno, H. E. Mounayri, S. Mukhopadhyay. Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process [J]. International Journal of Machine Tools & Manufacture, 2002, 42: 663-674.
    [45] M. Wan, W. H. Zhang, K. P. Qiu. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes [J]. Journal of Manufacturing Science and Engineering, 2005, 127(1): 13-22.
    [46]王志刚,何宁,张兵,等.航空薄壁零件加工变形的有限元分析[J].航空精密制造技术, 2000, 36(6): 7-11.
    [47]武凯,何宁.薄壁腹板加工变形规律及其变形控制方案的研究[J].中国机械工程, 2004,(8):670-674.
    [48]武凯,张平.有限元技术在航空薄壁件立铣变形分析中的应用[J].应用科学学报, 2003,(1):68-71.
    [49]武凯,张平. APDL在立铣受力变形分析中的应用[J].机械科学与技术(西安), 2002,(6):885-887.
    [50]武凯,何宁.基于变形控制的薄壁结构件高速铣削参数选择[J].机械科学与技术(西安),2005,(7):788-791.
    [51]魏丽,郑联语.改进薄壁零件数控加工质量的进给量局部优化方法[J].航空精密制造技术,2001,37(4):10-14.
    [52]郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法[J].航空学报,2001, 22(5):424-428.
    [53]王运巧,梅中义.航空薄壁弧形件加工变形的非线性有限元分析[J].航空制造技术, 2004,(6):84-86.
    [54]王运巧,梅中义,范玉青.航空薄壁结构件数控加工变形控制研究[J].现代制造工程, 2005,(1):31-33.
    [55]梅中义,王运巧.飞机结构件数控加工变形控制研究与仿真[J].航空学报,2005, 26(2):234-239.
    [56]邱克鹏,张卫红.基于超单元方法的铣削加工变形快速仿真计算[J].机械科学与技术(西安),2004,(10):1188-1190,1222.
    [57]高彤,张卫红.周铣加工表面形貌仿真新算法[J].西北工业大学学报,2004, (2):221-224.
    [58]谭彪,范炳炎.有限元法在薄壁零件加工仿真中的应用[J].航空工艺技术,1997, (1):30-32.
    [59] S. Ratchev, E. Govender, S. Nikov, etc. Force and deflection modeling in milling of low-rigidity complex parts [J]. Journal of Materials Processing Technology, 2003, 143-144: 796-801.
    [60] S. Ratchev, S. Liu, W. Huang, etc. Milling error prediction and compensation in machining of low-rigidity parts [J]. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1629-1641.
    [61] S. Ratchev, S. Liu, W. Huang, etc. A flexible force model for end milling of low-rigidity parts [J]. Journal of Materials Processing Technology, 2004, 153-154: 134-138.
    [62] E. Budak, Y. Altintas. Flexible milling force model for improved surface error predictons [C]. In: Proceedings of Engineering System Design and Analysis, Istanbul, Turkey, 1992,47(1): 89-94.
    [63] S. H. Ru, H. S. Lee, C. N. Chu. The form error prediction in side wall machining considering tool deflection[J]. International Journal of Machine Tools & Manufacture, 2003, 43:1405-1411
    [64]万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报,2005, 26(5):598-603.
    [65]万敏.薄壁件周铣加工过程中表面静态误差预测关键技术研究[D].西安:西北工业大学, 2005.
    [66] R.Sagherian, M. A. Elbestawi. A simulation system for improving machining accuracy in milling [M]. Computers in Industry, 1990, 14: 293-305.
    [67] S. Ratchev, W. Huang, S. Liu. Modelling and simulation environment for machining of low-rigidity components [J]. Journal of Materials Processing Technology, 2004, 153-154: 67-73.
    [68]郭魂.航空多框整体结构件铣削变形机理与预测分析研究[D].南京:南京航空航天大学, 2005.
    [69]岩部育洋. High accurate machining of thin wall shape workpiece by end mill [C].日本机械学会论文集, 1999, 65(632): 415-420.
    [70] C. Raksiri, M.Parnichkun. Geometric and force errors compensation in a 3-axis CNC milling machine[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13): 1283-1291.
    [71] S. M.Wang, Y. L.Liu. An efficient error compensation system for CNC multi-axis machines[J].International Journal of Machine Tool and Manufacture,2002, 42:1235-1245.
    [72] C. M. Lee, S. W. Kim, Y. H. Lee. The optimal cutter orientation in ball end milling of cantilever-shaped thin plate [J]. Journal of Material Processing Technology, 2004, 153: 900-906.
    [73] Rao V. S., Rao P. V. M. Tool deflection compensation in peripheral milling of curved geometries[J].International Journal of Machine Tools and Manufacture, 2006,46:1515, 2036-2043.
    [74] S. Ratchev, S. Liu, A. A. Becker. Error compensation strategy in milling flexible thin-wall parts [J]. Journal of Materials Processing Technology, 2005, 162-163: 673-681.
    [75] S. Ratchev, S.Liu, W. Huang,et al. An advanced FEA based force induced error compensation strategy in milling[J].International Journal of Machine Tools and Manufacture,2006,46(5):542-551.
    [76] M. W. Cho, T. I, Seo, H. D. Kwon. Integrated error compensation method using OMM system for profile milling operation [J]. Journal of Materials Processing Technology, 2003, 136: 88-99.
    [77]刘艳明,程涛,左力等.机械加工中切削用量的K-L优化研究[J].华中理工大学学报,1996, 24(5): 50-52.
    [78]孔金星.低刚度薄壁零件的精密加工[J].工具技术, 2003, 37(12): 29-32.
    [79]沈耿.薄板件切削加工控制变形的工艺措施[J].现代制造工程,2003,(4):50-52.
    [80]贾新杰,贾春德.一种弱刚度薄壁结构件装夹方案优化的有限元模拟[J].沈阳工业学院学报,2004,23(3):58-60.
    [81]周泽华.金属切削原理[M].上海:上海科学科技出版社, 1993.
    [82]陈日曜.金属切削原理[M].北京:机械工业出版社,2000.
    [83] SHPITALNI M, KOREN Y, LO C C. Realtime curve interpolators [J]. Computer-Aided Design, 1994, 26(11): 832-838.
    [84] ZHANG Q G, GREENWAY R B. Development and implementation of a NURBS curve motion interpolation[J]. Robotics and Computer-Integrated Manufacturing, 1998, 14(1): 27-36.
    [85] TIKHON M, KO T J, LEE S H, et al. NURBS interpolator for constant material removal rate in open NC machine tools[J]. Machine Tools & Manufacture, 2004, 44:237-245
    [86] BEDI S, ALI I, QUAN N. Advanced interpolation techniques for NC machines [J]. Journal of Engineering for Industry, 1993, 115(8):329-336.
    [87] YEH S S, HSU P L. The speed-controlled interpolator for machining parametric curves [J]. Computer-Aided Design, 1999, 31(5):349-357.
    [88] YEH S S, HSU P L. Adaptive-feedrate interpolation for parametric curves with a confined chord error [J]. Computer-Aided Design, 2002, 34(3):229-237.
    [89]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社, 1994.
    [90]胡自化,张平.三次B样条曲线恒速进给实时插补算法的研究[J].制造技术与机床, 2000,(8):31-33.
    [91]赵巍,王太勇,万淑敏.基于NURBS曲线加减速控制方法研究[J].中国机械工程, 2006, 17(1): 1-3.
    [92]高凤英,王煜,方华.数控机床编程与操作切削技术[M].南京:东南大学出版社, 2005.100-108.
    [93]王永章,杜君文,程国全.数控技术[M].北京:高等教育出版社, 2001.
    [94]龚仲华,荣瑞芳,宗国成.数控技术[M].北京:机械工业出版社, 2005.
    [95] SAKAMOTO S, INASAKI I. Analysis of generating motion for five-axis machining centers[J]. Transactions of the Japan Society of Mechanical Engineers,1993, 59 (561): 1553–1559.
    [96] LEE RS, SHE CH. Developing a postprocessor for three types of five-axis machine tools[J]. International Journal of Advanced Manufacturing Technology, 1997, 13(9): 658–665.
    [97] JUNG YH, LEE DW, KIM JS, et al. NC post-processor for 5-axis milling machine of table-rotating/tilting type[J]. Journal of Materials Processing Technology, 2002, 130–131: 641–646.
    [98] SHE CH, CHANG CC. Design of a generic five-axis postprocessor based on generalized kinematics model of machine tool[J]. International Journal of Machine Tools & Manufacture, 2007, 47: 537-545.
    [99]刘雄伟,张定,王增强,等.数控加工理论与编程技术[M].北京:机械工业出版社, 2000.
    [100]刘日良,张承瑞,宋现春,等.5轴数控机床坐标系统的一个特例及其后置处理方法[J].机械设计与制造工程,2002,31(3): 61-62.
    [101]赵世田,孙殿柱,孙肖霞.基于UG/POST五轴联动加工中心专用后置处理器的研发[J].组合机床与自动化加工技术,2006,1:26-28.
    [102]葛振红,姚振强,赵国伟.非正交五轴联动数控机床后置处理算法[J].机械设计与研究, 2006,22(2):79-81.
    [103]冯显英,何全民,胡滨,等.基于PRO/E的特殊五坐标机床的后置处理器的开发[J].组合机床与自动化加工技术,2006,9:24-26.
    [104]宁亭. C机能平面刀补转接矢量的算法研究[J].组合机床与自动化加工技术,1994,(4):19-25.
    [105]朱世春,刘学平,刘光复.微机数控系统刀具半径补偿的矢量分析和处理[J].中国机械工程,1995,6(增):83-86.
    [106]史旭明,赵万生,狄士春.数控刀具半径补偿研究[J].组合机床与自动化加工技术,1998,(11):15-19.
    [107]李沪曾,狄伟,诸乃雄,等.高速切削加工的计算机数控[J].机床与液压,2002,(4):65-67.
    [108]刘雄伟,袁哲俊,刘华明.数控机床三维刀具半径补偿方法探讨[J].机床, 1991,(8):48-49.
    [109]刘德福,陈峰.计算机数控系统三维刀具半径补偿研究[J].组合机床与自动加工技术, 2001,(8):9-11.
    [110] HU Zihua, QI Rui, ZHANG Ping, et al. An effective approximate tool radius compensation method for 3-axis NC machining free surface[C]. Proceedings of the 11th International Manufacturing Conference in China. Jinan: Shandong University Press, 2004,34 (Supp.):118-119.
    [111] MORETON D, DURNFORD R. Three-dimensional tool compensation for a three-axis turning centre[J]. Int. J. Adv. Manuf. Technol, 1999,15 : 649-654.
    [112] LIU Xiongwei. Five-axis NC Cylindrical milling of sculptured surfaces[J]. Computer Aided Design, 1995, 27(12): 887–894.
    [113] REDONNET J M, Rubio W, Dessein G. Side milling of ruled surfaces: Optimum positioning of the milling cutter and calculation of interference[J]. International Journal forAdvanced Manufacturing Technology, l998, 14: 459–465.
    [114] SANJEEV B, Stephen M, Cornelia M. Flank milling with flat end cuter[J]. Computer Aided Design, 2003, 35: 293–300.
    [115] CORNELIA M, Sanjeev B, Stephen M. Triple tangent flank milling of ruled surfaces[J]. Computer Aided Design, 2004, 36: 375–378.
    [116] GONG Hu, CAO Lixin, LIU Jian. Improved positioning of cylindrical cutter for flank milling ruled surfaces[J], Computer Aided Design, 2005, 37: 1205–1213.
    [117] SENATORE J, monies F, Redonnet J M, etal. Improved positioning for side milling of ruled surfaces: Analysis of the rotation axis's influence on machining error[J]. International Journal of Machine Tools and Manufacture, 2007, 47: 934–945.
    [118]陈晧辉,刘华明,孙春华.发动机叶轮侧铣数控加工方法及误差计算[J].机械工程学报, 2003, 39 (7): l43–145.
    [119] CHIOU J C J. Accurate tool position for five-axis ruled surface machining by swept envelope approach[J]. Computer Aided Design, 2004, 36: 967–974.
    [120]宫虎,曹利新,刘健.数控侧铣加工非可展直纹面的刀位整体优化原理与方法[J].机械工程学报, 2005, 41(11): 134–139.
    [121] LI C G, Mann S, Bedi S. Error measurements for flank milling[J], Computer Aided Design, 2005, 37: 1459–1468.
    [122]钱伟长,叶开沉.弹性力学[M].北京:科学出版社,1957.
    [123] S.铁摩辛柯,S.沃诺斯基.板壳理论[M].北京:科学出版社,1997.
    [124]黄克智等.板壳理论[M].清华大学出版社,1987.
    [125]寿楠椿.弹性薄板弯曲[M].北京:高等教育出版社,1984.
    [126]黄炎.弹性薄板理论[M].长沙:国防科技大学出版社,1982.
    [127]徐芝纶.弹性力学简明教程(第二版) [M].北京:高等教育出版社,1983.
    [128]张福范.弹性薄板(第二版) [M].北京:科学出版社,1984.
    [129]张福范.悬臂矩形板的弯曲[J].清华大学学报,1979,19(2):43-51.
    [130]张福范.悬臂矩形板的不对称弯曲[J].固体力学学报,1980,(2):170-182.
    [131]林鹏程.在集中荷载作用下悬臂矩形板的弯曲[J].应用数学与力学,1982,3(2):249-257.
    [132]成祥生.应用板壳理论.济南:山东科学技术出版社[M], 1989.
    [133]王磊,李宝家.矩形薄板弯曲的近似解法—康托洛维奇―伽辽金法[J].应用数学与力学,1986,7(1):81-94.
    [134]曲庆璋,梁兴复.矩形悬臂板的弯曲[J].土木工程学报,1991,24(2):60-67.
    [135]胡肇滋.对“矩形悬臂板的弯曲”的讨论[J].土木工程学报,1992,25(2):72-75.
    [136]施丽卿.用双向三角级数法解矩形薄板的弯曲[J].福州大学学报(自然科学版),1990,18(4):17-22.
    [137]曲庆璋,梁兴复.矩形悬臂板的稳定、自由振动和弯曲问题分析[J].土木工程学报,1995,28(5):12-20.
    [138]王道斌,黄羚,陈天民.双样条加权残值法分析矩形悬臂板的横向弯曲[J].石家庄铁道学院学报,1999,12(1):28-31.
    [139]马功勋,王伯和.横向集中力作用下悬臂薄板形变分析[J].南京化工学院学报,1995,17(1):70-76.
    [140]曲庆璋,梁兴复,章权.矩形悬臂板的非线性弯曲[J].强度与环境,1999,(3):5-10.
    [141]许琪楼,白杨,王海.一边支承矩形板弯曲精确解法[J].郑州大学学报(工学版),2004,25(2):23-27.
    [142]艾兴.切削用量简明手册[M].北京:机械工业出版社,1994.
    [143]乐兑谦.金属切削刀具[M].北京:机械工业出版社,2001:59.
    [144]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [145]陈火红,尹伟奇.MSC.Marc二次开发指南[M].北京:科学出版社,2004.
    [146] L. Kops, D. T. Vo. Determination of the equivalent diameter of an end mill based on its compliance [C]. Annals of the CIRP, 1990, 39(1): 93-96.
    [147]张定华,刘维伟.叶片类零件四坐标高效螺旋数控编程方法研究[J].机械科学与技术(西安),2003,(2):177-179.
    [148]陈晧辉,刘华明.国内外叶轮数控加工发展现状[J].航天制造技术,2002,4(2):45-48.
    [149]王志刚,何宁.薄壁零件加工变形分析及控制方案[J].中国机械工程,2002,(2):114-117.
    [150]任秉银,刘华明.螺旋桨叶片曲面数控加工几何模型研究[J].哈尔滨工业大学学报, 1999,31(4):84-87.
    [151]周艳红,周济.五坐标数控加工的理论误差分析与控制[J].机械工程学报, 1999,(5):54-57.
    [152] Yang B., Zhou J. Error Analysis for Four-Axis Side Milling of Undevelopable Ruled Surfaces[J].Control Engineering Practice,1998,6(4):481-487.
    [153]白瑀,张定华.叶片螺旋铣弹性变形分析[J].机械科学与技术(西安),2005, (7):800-802.
    [154] Concepts ETI, Inc.. Cutter path solutions for turbo machinery and gas turbine components[EB/OL]. http://www.conceptseti.com.
    [155]陈晧辉.整体叶轮加工关键技术的研究及软件开发[D].哈尔滨:哈尔滨工业大学, 2003.
    [156] S. Smith, D. Dvorak. Tool path strategies for high speed milling aluminum workpieces with thin webs [J]. Mechatronics, 1998, 8(4): 291-300.
    [157] StarragHeckert GmbH. 5 axis machines with CAM software RCS [EB/OL]. http://www.starragheckert.com/.
    [158]魏巍,李晓豁,王田苗.数控加工中误差的来源及解决方法[J].机床与液压, 2005, (5) :52-54.
    [159]王增强,孟晓娴,任军学,等.复杂薄壁零件数控加工变形误差控制补偿技术研究[J].机床与液压,2006,(4):61-64.
    [160] Wu S M, Ni J. Precision machining without precise machinery [ J ] . Annals of the CIRP, 1989, 38 (1) : 533– 536.
    [161]高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社, 1988.
    [162]白杨.一边支承矩形板弯曲精确解法[D].郑州:郑州大学,2005.
    [163]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700