用户名: 密码: 验证码:
浑江煤田推覆构造特征、演化及找煤远景区预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浑江煤田位于吉林省东南部,属通化市和白山市管辖,范围西起通化市二道江区铁厂镇,经白山市、咋子、湾沟,东至白山市松树镇,全长130km,宽15km,面积约1950km~2。近年来,由于浑江煤田煤炭资源开发强度增大,大部分矿井因煤炭资源枯竭而相继关闭,仅剩余砟子、八宝、松树等生产矿井,煤炭接替资源十分紧张,严重地制约了当地的经济发展。同时,浑江煤田地质构造复杂,推覆构造发育,对构造控煤理论特别是推覆构造控煤理论的研究滞后,给煤炭资源的勘查、开采等工作带来极大困难。因此,对该煤田内的推覆构造特征、演化以及控煤规律的研究,不但具有深远的现实意义,而且具有重要的理论指导意义。对寻找具有进一步勘探开发潜力的煤炭资源后备基地,扩大新的找煤领域,也是十分必要的。
     在充分收集资料的基础上,对浑江煤田的区域构造、推覆构造特征、形成及演化、构造特征与演化历史、聚煤规律及构造控煤样式等内容进行了详细研究,对煤炭资源远景区进行了预测,主要取得如下成果:
     1、研究认为,北东向浑江~湾沟断裂带和东西向兴华~白头山天池断裂带,是影响浑江煤田形成与发展的主要区域构造,其形成和演化对浑江煤田的构造形成和演化起关键作用。
     2、详细研究了浑江煤田推覆构造的几何特征,对推覆构造分带性进行了划分,确定了推覆构造样式种类,并将推覆构造的组合型式划分为复合式双重构造、叠瓦式构造、对冲构造、项冲截断式双冲构造、顺层滑褶叠覆型、切层滑褶叠覆型等6种型式。
     3、通过对推覆构造运动学特征的研究,提出了推覆构造形成的具体时代,认为滑覆构造形成时代分为两个主要时期,早期形成于三叠世末期,晚期形成于中侏罗世;逆冲推覆构造形成时代在中侏罗世。浑江煤田逆冲断层以及推覆体的运移方向总体表现为由南东向北西,滑移距离至少为12km。逆冲推覆构造的形成和发展受重力滑覆构造的控制和影响。
     4、首次对浑江煤田重力滑覆构造的形成机制进行阐述,认为区域构造浑江~湾沟断裂带和兴华~白头山天池断裂带,为浑江煤田推覆构造的形成提供很好的动力条件;研究区石炭、二叠系强弱相间的泥岩、粘土岩、页岩和煤层等是滑覆构造形成的最有利的界面;晚古生代煤系地层内部发育丰富的灰岩含水层,为煤系内高孔隙流体压力的形成提供物质条件,是重力滑覆体发生滑移的前提条件。
     5、根据演化特征不同,将浑江煤田推覆构造的演化历史分成四个主要时期。认为印支期是古生代盖层褶皱、早期重力滑覆体形成期;早燕山期是晚期重力滑覆、推覆构造形成时期;晚燕山期是滑覆构造活化期;喜山期是滑覆构造风化剥蚀期。并绘制了浑江煤田推覆构造演化模式图。
     6、对浑江煤田构造特征进行了重点论述,认为区域构造北东向浑江~湾沟断裂带和东西向兴华~白头山天池断裂带,是浑江煤田构造呈现东西分区和南北分带的构造基础。浑江煤田褶皱主要以向斜为主,具有复式褶皱的特点。西区向斜呈北东向展布,可分为铁厂~八道江、头道沟~老房子~苇塘两个复式向斜;东区向斜呈东西向展布,包括石人向斜、湾沟向斜和松树镇向斜。浑江煤田以推覆构造为主,少数为北西向和北东向张性断裂。断裂构造具有多形式、多期次和多方向的复杂构造特征。
     7、通过分析研究,将浑江煤田构造形成和演化历史划为成煤前煤系基底形成阶段,成煤期同沉积构造阶段,成煤后构造变动阶段等三大发展阶段。认为浑江煤田在成煤后主要经历了印支期、燕山早期、燕山晚期和喜山期的构造运动。
     8、浑江煤田聚煤主要受成煤前区域构造、同沉积构造和成煤后构造的控制和影响。辽吉裂谷系和浑江裂陷槽,对以后的成煤盆地的形态产生很大影响。晚古生代,浑江~湾沟断裂带和兴华~白头山天池断裂带对浑江煤田沉积环境和构造演化起重要的控制作用。成煤后,浑江煤田被北东向浑江~湾沟断裂带南支断裂之一的达台山老岭断裂(F_1)分成东、西两区,两个地区有明显的构造分带特征。在含煤地层的控制上也有较大的区别,西区以断裂控煤为主;东区以褶皱控煤为主。
     9、首次提出了逆冲推覆构造控煤样式、重力滑覆构造控煤样式是浑江煤田主要控煤构造样式。逆冲推覆构造的控煤样式包括复合式双重构造、叠瓦式构造、对冲构造、顶冲截断式双冲构造。这些控煤构造样式主要通过逆冲断层对煤层起控制作用,不仅造成石炭、二叠系产生倒转,而且也使石炭、二叠系产生垂向上的重复,增加了煤炭资源量。同时,逆冲断层与滑覆断层联合控制,往往使推覆体下一定深度存在含煤地层,这也是浑江煤田的普遍规律。重力滑覆控煤构造样式包括顺层滑褶叠覆型和切层滑褶叠覆型。通过重力滑覆体在石炭二叠系软弱层中切层或顺层滑动,在滑覆体下保存煤层。
     10、根据上述综合研究成果,结合浑江煤田煤炭资源勘查、开发现状,确定了3个具有进一步勘探潜力的预测区,即头道沟煤矿北预测区、曲家营子预测区、沙金沟预测区。预测区总面积46.8km~2,预测区潜在资源量为15534万t。
     总之,本文对浑江煤田构造形成机制及演化进行全面论述,推覆构造特征、形成机制及演化等进行了详细而深入研究,根据推覆构造控煤理论,预测了有进一步勘探潜力区域。该理论的研究以及预测区的确定,对浑江煤田煤炭资源的勘探、开发将起到重要的指导作用,具有重要的实用价值和应用价值。
Hunjiang Coalfield is located in the southern part of Jinlin Provence, which falls under the jurisdiction of Tonghua and Baishan cities, its range from Tiechang Zhen west Erdaojiang urban area of Baishan city via Baishan city, Zhazi, Wangou to Songshu Zhen the east of Baishan city. The overall length of Hunjiang Coalfield is 130km, 15km in width and has an area of about 1950km~2. In recent years, with the coal resource developing intensity increases, most of coal mines had to shut down because the coal resources are exhausted. The production coal mines include Zhazi, Babao and Songshu greatly restricted the economic growth of local areas for the continued coal resources becoming less and less. At the same time, the structure is very complex and the nappe structure develop in Hunjiang Coalfield, and the research on the structure coal-controlling theory, especial the nappe structure coal-controlling theory is relative laggard, which extremely add to the difficulties to the coal exploration and production.So,the research on the characteristic and evolution of the nappe structure and structure coal-controlling law, not only has active realistic significance ,but also has profound historic significance. It is very necessary to find the further exploration potential coal resource region and expand new coal areas.
     Based on the information collecting, the regional structures, the characteristic, formation and evolution of nappe structure, the structure characteristic and evolution history, the coal collecting law and structure coal-controlling styles have been studied in detail, The main results obtained are as follows:
     1. The study concludes that the NE orientation fault zones of Hunjiang to Wangou and the EW orientation fault zones of Xinhuan to Baitoushantianchi,are main regional structures to affect the formation and development of Hunjiang Coalfield, whose formation and evolution is essential for the structure formation and evolution of Hunjiang Coalfield.
     2. The nappe structure geometric significance of Hunjiang Coalfield was studied in detail, the belts of nappe structure was divided, the style kinds of nappe structure was determined and the nappe structure combined type was divided into six patterns, complex duplex structure pattern, thrust-nappe structure pattern, face to face thrust structure pattern, top thrusting cut-off and duplex structure pattern, bedding slipping fold structure pattern and bedding cutting fold structure pattern.
     3. Through the study of kinematics characteristics of nappe structure, The exactly forming era of nappe structures was proposed for the first time, and the sliding structures forming time can be divided into two main periods (the early stage was at the end of Triassic, the late stage was at middle Jurassic); the thrust nappe structures forming time was at middle Jurassic. It is believed that the overall movement direction of thrust faults and nappes was from southeast to northwest and the sliding distance was at least 12km.The forming and developing of thrust nappe structures were controlled and affected by gravitational sliding structures.
     4. The mechanism of gravitational sliding structures of Hunjiang Coalfield was expatiated for the first time. It is believed that the Hunjiang to Wangou and Xinghua to Baitoushantianchi fault zones provided very good dynamics conditions for the nappe structures forming; The alternate mudstone, clay rock, shale and coal seam of hard and soft in the research area, were the best interfaces for nappe structures formation; and the abundant limestone aquifers developing in the late Paleozoic coal measures, provided material conditions for high pore fluid pressure, which is the precondition for gravitational nappe to slide.
     5. According to the different evolution characteristics, the nappe structure evolution history of Hunjiang Coalfield was divided four main periods. It is believed that the Indo-Chinese period is Paleozoic cover fold and the early gravitational nappe forming time; the early Yanshan period is the forming time of late gravitational nappe and nappe structure; the late Yanshan period is the time of gravitational sliding structure activation; the Himalayan period is the weathering time of gravitational sliding structure. The nappe structure model map of Hunjiang Coalfield was drawn.
     6. The structure characteristic of Hunjiang Coalfield was mainly discussed, and it was considered that the NE orientation fault zones of Hunjiang to Wangou and the EW orientation fault zones of Xinghua to Baitoushantianchi are the bases for structure area dividing from the east to the west and zone dividing from south to the north. The folds are mainly synclines, which have the characteristic of complex folds. In the west area, the synclines distribute in NE, which can be divided into two complex synclines, Tiechang to Badaojiang and Toudaogou to Laofangzi to Weitang. In the east area, the synclines distribute in EW, which include Shiren and Songshu synclines. The bigger numbers of structure are nappe structures, the smaller number of structure are NW and NE direction tensional fault's. The faults have the characteristic of more forms, more times and more direction.
     7.Through the analysis and study, the structure formation and evolution history was divided into coal measure basement forming stage before coal forming, synsedimentary structure stage during coal forming and structural movement stage after coal forming and the Hunjiang Coalfield mainly experienced Indo-Chinese period, the early Yanshan period, the late Yanshan period and Himalayan period structural movement.
     8. The coal-accumulation process of Hunjiang Coalfield was mainly controlled by regional structure before coal forming, synsedimentary structure during coal forming and structural movement after coal forming. Liaoning-Jilin rift systems and Hunjiang rift affected to the formation of coal-basin very much; the fault zones of Hunjiang to Wangou and Xinghua to Baitoushantianchi played an important role in sedimentary environment and structure evolution of Hunjiang Coalfield; after coal formation, the Dataishan fault (one branch fault of the Hunjiang to Wangou in the south) divided Hunjiang Coalfield into east and west parts, in which the belts structure is very clear. There have big differences on the control to coal measures, the west area, the coal measures controlled mainly by faults and the east area by folds.
     9. The thrust nappe structure and gravitational sliding structure are the main coal control structure patterns were proposed for the first time. The thrust nappe structure coal control patterns include complex duplex structure pattern, thrust-nappe structure pattern, face to face thrust structure pattern, top thrusting cut-off and duplex structure pattern, which controlled the coal seams mainly through thrust faults, not only brought the carboniferous and Permian systems to reverse ,but also made them repeat in the vertical direction. At the same time, by the combining control of thrust and sliding faults, at certain depth under the nappes existe coal-bearing formation, which is general law in Hunjiang Coalfield. The gravitational sliding coal control patterns include bedding slipping fold structure pattern and bedding cutting fold structure pattern. Through the gravitational sliding nappes bed cutting or bedding movement in hard or soft strata, under the sliding nappes existe coal-bearing formation.
     10.Based on the study results above, combining the coal resource prospecting and developing present situation, three forecasting areas with exploration potential were determined(forecasting area in north of Toudagou Mine, Qujiayingzi forecasting area and Shajingou forecasting area). The total forecasting area is 46.8km~2 and the amount resources is 1553.4 thousand ton.
     In a word, in this paper, the structure forming mechanism and evolution of Hunjiang Coalfield was fully discussed, the characteristics and forming mechanism of nappe structure and its evolution were studied in detail, and based on the nappe structure coal control theory, forecasted the exploration potential areas. The study of nappe structures and the determination of forecasting areas will play an instruction role in the coal resource prospecting and developing in Hunjiang Coalfield and have important practical use and application value.
引文
, 1989,4,301-312.
    
    [2]Mcclay K R, Price N J, eds.Thrust and nappe tectonics[C].London: Blackwell Scientific Publications, 1981.539.
    
    [3]Mcclay K R, ed.Thrust Tectonics [M].London: Chapmanand Hall, 1992. 447.
    [4]Platt J P,Coward M P,Deramond J,et al.Thrusting and deformation[J].Journal of Structural Geology,1986,8:215 —483.
    
    [5]Elliott D E.The energy balance and deformation mechanisms of thrust sheets[J].Philosophical Transactions of the Royal Society of London,1976,283: 289— 312.
    
    [6]Chapple W M. Mechanics of thin-skinned fold-and-thrust belts [J].Geological Society of America Bullet in, 1978, 89:1189—1198.
    
    [7]Dahlen F A, Suppe J, Davis D.Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory [J]. Journal of Geophysical Research, 1984, 89: 10087-10101.
    
    [8]Dahlen F A. Critical tapermodel of fold-and2-thrust belts and accretionary wedges [J].Annual Reviews of Earth and Planetary Sciences, 1990, 18: 55 — 99.
    [9]Davis D,Suppe J,Dahlen F.A.Mechanics of fold and thrust belts and accretionary wedges[J].Journl of Geophysical Research,1983,88:1153— 1172.
    
    [10]Dahlen F A,Suppe J.Mechanics,growth and erosion of mountain belts[J].Geoogical Society of America Special Paper,1988,218:161 —178.
    
    [11]Willett S D.Dynamic and kinematic growth and change of a Coulomb wedge [A]. In: McClay K R, ed.Thrust Tectonics[C].London: Chapman and Hall. 1992.
    [12]Woodward N B. Geological applicability of critical-wedge thrust belt models [J]. Geological Society of America Bullet in, 1987, 99: 827—832.
    
    [13]Bally A W,Gordy P L,Stewart G A. Structure, seismic data and orogenic evolution of the southern Canadian Rockies[J]. Canadian Petroleum Geology Bullet in, 1966, 14: 337-381.
    
    [14]Dahlstrom C D A. Balanced cross-sections [J].Canadian Journal of Earth Sciences, 1969,6: 743-757.
    
    [15]Price R A.The Cordilleran foreland thrust and fold belt in the southern Canadian Rockies [A], In:Mcclay K R,Price J,eds.Thrust and Nappe Tectonics[C].London: Blackwell Scientific Publications, 1981.427—448.
    
    [16]Rich J L. Mechanics of low- angle overthrust faulting asillustrated by Cumberland th rust block, Virginia, Kentucky and Tennessee [J]. AAPG Bull, 1934, 18: 1584—1596.
    [17]Jamison W R.Geometric analyses of fold development in overthrust terranes [J].Journal of Structural Geology, 1987,9: 207—219.
    
    [18]Suppe J.Geometry and kinematics of fault-bend folding[J].Amer Jour of Sci, 1983,283:648-721.
    
    [19]Mitra S.Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps [J]. American Association of Petroleum Geologists Bulletin, 1990,74:921 — 945.
    
    [20]Mosar J,Suppe J.Role of shear in fault-propagation folding [A].In:McClay K R,ed.Thrust Tectonics[C].London:Chapman and Hall, 1992. 123 — 132.
    
    [21]Suppe J.Principles of Structural Geology[M]. New Jersey: Englewood Cliffs, Prentice-Hall, 1985.537.
    
    [22]Suppe J, Medwedeff D A.Fault-propagation folding [J].Geological Society of America Bullet in, 1984, 16:670.
    
    [23]Suppe J,Medwedeff D A.Geometry and kinematics of fault-propagation folding [J].Ecologae Geol Helv, 1990 ,83(3): 409-454.
    
    [24]Mitra S, Namson J. Equal-area balancing [J].American Journal of Science, 1989, 289:563-599.
    
    [25]Suppe J, Chou G T, Hook S C.Rates of folding and faulting determined from growth strata[A].In:McClay K R, ed.Thrust Tectonics[C].London:Chapman and Hall, 1992. 105-121.
    
    [26]Boyer S E, Elliott D.Thrust systems [J]. AA PG, 1982, 66:1196-1230.
    
    [27]Dahlstrom C D A.Structural geology in the eastern margin of the Canadian Rocky Mountains [J]Bull Canadian Petroleum Geology, 1970,18: 332—406.
    
    [28]Mitra S.Duplex structures and imbricate thrust systems:Geometry, structural position, and hydrocarbon potential[J].AA PG,1986,70: 1087—1112.
    
    [29]Woodward N B,BoyerS E,Suppe J.Balanced Geological Cross-sections: an Essential Technique in Geological Research and Exploration[M]. American Geophysical Union,1989.
    
    [30]Woodward N B, Boyer S E,Suppe J.Balanced geological cross-sections[M]. American Geophysical Union Short Course in Geology,1989.6:132.
    
    [31]Enfield M A, Coward M P.The structure of the West Orkney Basin, northern Scotland [J]. Journal of the Geological Society,London,1987,144:871 —884.
    
    [32]Laubscher H. The kinematic puzzle of the Neogene Northern Andes [A].In:Schaer J P, Rodgers J,eds.The Anatomy of Mountain Ranges[C].Princeton:Princeton University Press,1987.211-227.
    
    [33]Bitterli T.The kinematic evolution of a classical Jura fold:a reinterpretation based on 3- dimensional balancing techniques(Weissenstein Anticline,Jura Mountains,Switzerland) [J].Eclogae Geological Helvetiae, 1990,83: 493—511.
    [34]Mitra S.Three-dimensional geometry and kinematic evolution of the Pine Mountain thrust system,southern Appalachians[J].Geol Soc Amer Bull,1988,100:72-95.
    [35]Mitra,S.Balanced structural interpretations in fold and thrust belts[A].In:Mitra S,Fisher G,ed.Structural Geology of Fold and Thrust Belts[C].Baltimore:Johns Hopkins University Press,1992.53-77.
    [36]Mason R A.Structure of the Alice anticline,Papua New Guinea:serial balanced cross-sections and their restoration[J].Journal of Structural Geology,1997,19(5):719-734.
    [37]Hatcher R D Jr,Williams R T.Mechanical model for single thrust sheets Part 1:Crystalline th rust sheets and their relationships to the mechanical(o|¨)thermal behaviour of orogenic belts[J].Geo 1 Soc Amer Bull,1986,97:975-985.
    [37]Hatcher R D Jr.Structural geology-principles,concepts,and problems[M].New Jersey:Prentice-Hall Inc,1995.525.
    [39]Hatcher R D Jr,Hooper R J.Evolution of crystalline thrust sheets in the internal parts of mountain chains[A].In:Mcclay K R,ed.Thrust Tectonics[C].London:Chapman and Hall,1992.217-233.
    [40]Escher A,Masson H,Steck A.Nappe geometry in the Western Swiss Alps[J].J Struct Geol,1993.15(3-5):501-509.
    [41]Escher A,Hunziker J,Marthaler M,et al.Geologic frame-work and structural evolution of the Western Swiss-Italian Alps[A].In:Pfiffner O A,Lehner P,Heitzmann P,et al eds.Deep Structure of the Swiss Alps Results of the National Research Program20(NRP20)[C].Basel:Birkhauser,1997.205-222.
    [42]Epard J L,Escher A.Transition from basement to cover:a geometric model[J].J Struct Geol,1996.18(5):533-548.
    [43]吴正文,柴育成,黄万夫,等.秦岭造山带的推覆构造格局[A].西安:西北大学出版社,1991,111-120.
    [44]郝杰,刘小汉.桐柏—大别碰撞造山带大型推覆—滑脱构造及其演化[J].地质科学,1988,23(1):1-9.
    [45]徐树桐,董树文,周海渊,等.大别山东段(安徽)大别杂岩中的断层构造岩和推覆构造[J].科学通报,1983,29(5):298-301.
    [46]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断席构造样式与前陆盆地演化[J].地质学报,1994,68(2):101-118.
    [47]卢华复,阎吉柱,李鹏举,等.四川前龙门山中南段推覆构造及其与天然气藏关系[J].南京大学学报(地球科学).1993,5(2):141-147.
    [48]林茂炳,吴山.龙门山推覆构造变形特征[A].成都:成都科技大学出版社,1994. 179-187.
    [49]陶晓风.龙门山南段推覆构造与前陆盆地演化[J].成都理工学院学报.1999,26(1):73-77.
    [50]陈海泓,孙枢,李继亮,等.雪峰山大地构造的基本特征初探[J].地质科学.1993,28(3):201-209.
    [51]刘和甫,梁慧社,蔡立国,等.天山两侧前陆冲断席构造样式与前陆盆地演化[J].地球科学.1994,19(6):727-741.
    [52]舒良树,马瑞士,郭令智,等.天山东段推覆构造研究[J].地质科学.1997,32(3):337-350.
    [53]刘城墉,淮南推覆体与找煤[J].中国地质科学院南京地质矿产研究所所刊.1986,25:14-20.
    [54]徐树桐,陈冠宝,周海渊,等.徐淮推覆体[J].科学通报.1987,14:1091-1095.
    [55]王桂梁,曹代勇,江波,等.华北南部逆冲推覆伸展滑覆与重力滑覆构造-兼论滑脱构造的研究方法[M].徐州:中国矿业大学出版社,1992,100-120.
    [56]王文杰,王信.中国东部煤田推覆、滑脱构造与找煤研究[M].徐州:中国矿业大学出版社,1993,10-20.
    [57]陈云棠,舒良树.淮北夹沟-桃山集地区推覆构造研究[J].大地构造与成矿学2000,24(3):208-217.
    [58]胡建中,谭应佳,张平,等.塔里木盆地西南缘山前带逆冲推覆构造特征[J].地学前缘.2008,15(2):222-229.
    [59]曲国胜,李亦纲,陈杰.等.柯坪塔格推覆构造几何学、运动学及其构造演化[J].地学前缘.2003,特刊:142-152.
    [60]刘正宏,徐仲元,杨振升.等.阴山中生代地壳逆冲推覆与伸展变形作用[J].地质通报.2002,21(4-5):246-250.
    [61]陈志勇,温长顺,张维杰.内蒙古色尔腾山的推覆构造[J],地球科学.2000,25(3):237-241.
    [62]柏道远,邹宾微,赵龙辉,等.湘东太湖逆冲推覆构造基本特征研究[J],中国地质.2009.36(1):53-60.
    [63]周旭林,陈晓湘.湖南涟邵煤田渣渡矿区推(滑)覆构造特征及找煤意义[J].煤炭技术.2006,25(4):96-98.
    [64]赵尧,陈伟,鲜成龙,等.川西龙门山前逆冲推覆构造样式探讨[J],西部探矿工程.2009,4:137-143.
    [65]张玉珠,张鹏.韩台煤田福兴井田逆冲推覆构造及成因探讨[J],山东煤炭科技.2009.3:104-106.
    [66]李亚林,张国伟,李三忠.等.秦岭略阳-白水江地区双向推覆构造及形成机制[J],地质科学.2001,4:465-473.
    [67]郭华,吴正文,柴育成等.大别山造山带中生代逆冲推覆构造系统[J].现代地质,2002,16(2):121-129.
    [68]张泓,郑玉柱,郑高升等,安徽淮南煤田阜凤推覆体之下的伸展构造及其形成机制[J],煤田地质与勘探.2003,31(3):1-4.
    [69]郑振文.龙岩四集矿区逆冲推覆构造特征与找煤[J].能源与环境.2007,3:53-54.
    [70]许有金,刘军正.汝州煤田逆冲推覆、滑覆构造的形态特征[J].中国煤田地质.2007,19(5):13-15.
    [71]罗碧华,秦启荣.逆冲推覆构造的研究类型和方法[J].内蒙古石油化工.2007,5:263-265.
    [72]胡斌,齐丽军,张辉等.平衡剖面在焉耆盆地构造演化分析中的应用[J].西南石油学院学报.2006,28(4):17-21.
    [71]王文杰.福建省含煤区推覆、滑脱构造[J].中国煤炭地质.2009,21(2):6-9.
    [72]张庆灼.广平煤矿区推覆构造特征与控煤作用[J].能源与环境.2008,6:49-50.
    [73]唐来发.龙永煤田推覆构造特征及找煤预测[J].能源与环境.2009.3:61-63.
    [74]崔学军,刘春根,钟达洪等.井冈山逆冲推覆构造基本特征及找矿意义[J].大地构造与成矿学.2003.27(1):43-47.
    [75]周宝直.萍乐坳陷东段推覆构造特征及煤田预测[J].华东地质学院学报.2000,23(2):134-140.
    [76]王仁山.略论福建大田含煤区推覆体下找煤[J].能源与环境.2006,6:20-21.
    [77]周旭林,陈晓湘.湖南涟邵煤田渣渡矿区推(滑)覆构造特征及找煤意义[J].煤炭技术.2006,25(4):96-98.
    [78]陶建华.福建推覆构造研究与找矿突破[J].福建地质.2008,27(2):105-124.
    [79]吉林省煤田地质局.吉林省浑江煤田煤炭资源潜力评价报告.2008,1-150.
    [80]吉林省地质矿产局.吉林省地质志[M].北京:地质出版社,1988,577-580.
    [81]田爱平.浑江盆地内力地质作用的探讨及煤质评价[J].煤炭技术,2003(5):105-106.
    [82]马杏垣,索书田.论滑覆及岩石圈内多层次滑脱构造[J],地质学报,1984,58(3),205-213.
    [83]韩克从等.茅山地区推覆构造及其地质意义[J],大地构造与成矿学,1985,9(1):37-68.
    [84]李明元,邓文龙.推覆体的几何学与四川龙门山推覆体模式[J].四川建材学院学报,4(4),45-54.
    [85]徐开礼,朱志澄.构造地质学[M].北京:地质出版社.2003.173-175.
    [86]樊光明.江南隆起中段盖层中的推覆和滑覆构造及其地质构造模型[J].地球科学-中国地质大学学报,1993,18(4):393-402.
    [87]朱志澄.再探逆冲推覆构造研究的进展和动向[J],地质科技情报,1985,(4)1:9-16.
    [88]长春煤炭科学研究所,浑江煤田滑脱构造与沉积环境研究[R],1989.
    [89]张明山,陈发景.平衡剖面技术应用的条件及实例分析[J].石油地球物理勘探,1998,33(4):532-540.
    [90]毛小平,黄延枯,吴冲龙.体元结构模型在三维地震模型正演模拟研究中的应用[J].地球物理学报,1998,41(6):833-840.
    [91]张向鹏,杨晓薇.平衡剖面技术的研究现状及进展[J].煤田地质与勘探,2007,35(2):78-80.
    [92]徐开礼,朱志澄.构造地质学[M].北京:地质出版社.2003.173-175.
    [93]张宏,王小凤.郯庐断裂系北段地质特征及中生代演化[J].中国地质科学院沈阳地质矿产研究所集刊,1995(4):50-77.
    [94]WANG Yu,DOU Li-rong.Formation time and dyna-mic characteristics of the northern part of the Tan-Lufault zone in East China[J].Seismology and Geology,1997,19(2):186- 194.
    [95]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面[M].北京:地质出版社,1999,31.
    [96]朱光,牛漫兰,刘国生,等.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件[J].地质学报,2002,76(3):325-334.
    [97]张庆龙,王良书,谢国爱,等.郯庐断裂带北延及中新生代构造体制转换问题的探讨[J].高校地质学报,2005,11(4):577-584.
    [98]Hubbert M K.Rubey W W.Role of Fluid Pressure in Mechanics of Overthrust Faulting.Geol.Soc.Am.Bull.1959,vol.70:115-205.
    [99]Gretener E.Pore Pressure:Fundamentals,General Ramifications and Implications for Structural Geology.AAPG.Department of Education,1979.
    [100]吉林省通化矿业(集团)有限责任公司.吉林省白山市浑江煤田八宝井田资源储量核实报告[R],2007.
    [101]马杏垣,等.重力作用与构造运动[M],北京:地质出版社,1989.
    [102]Crans,W.Mandl,G.and Haremboure,On the theory of growth faulting:a geochemical delta model based on gravity sliding[J].Petrol.Geol.1980,2:265- 307.
    [103]万天丰.中国大地构造学纲要[M].北京:地质出版社,2004.
    [104]徐嘉炜.郯城-庐江平移断层系统[A].构造地质论丛(3)[J].北京:地质出版社,1984,18-32.
    [105]徐嘉炜.论走滑断层作用的几个主要问题[J].地学前缘,1995,2(1,2):125-135.
    [106]强祖基.郯庐断裂带的构造演化特征[A].构造地质论丛(3)[J].北京:地质出版社,1984,94-106.
    [107]邓乃恭.中生代华夏类型构造和郯庐断裂体系的特征和形成机制[A].构造地质论丛(3)[J].北京:地质出版社,1984,33-38.
    [108]许志琴.郯庐裂谷系概述[A].构造地质论丛(3)[J].北京:地质出版社,1984,39-46.
    [109]万天丰.郯庐断裂带的最大左行走滑距及其形成时期[J].高校地质学报,1996,2(1):14-24.
    [110]翟光明等.中国石油地质志(二)[M].北京:石油工业出版社,1993.116.
    [111]杨继良.松辽盆地构造特征及其与油气关系[A].中国含油气区构造特征[M],北京:石油工业出版社,1989.
    [112]胡见义.渤海湾复式油气聚集区的形成与分布[A].中国油气聚集与分布[M],北京:石油工业出版社,1991,61-72.
    [113]王小林,夏木林,J.G.Liou等.中国东部的含科石英榴辉岩带的发现-郯庐断裂平移作用的证据[J].中国区域地质,1992,1:88-91.
    [114]武仁,马德源,侯绍清.吉林南部推复构造与找煤意义[J].东北盆地地质.1987,1:1-16.
    [115]邵建波,毕守业,杨豹.论吉南古元古代构造演化[J].吉林地质.1993.12(1):34-41.
    [116]谢仁海.大地构造学派概观[M].徐州:中国矿业大学出版社.1989,133-140.
    [117]何保,李茂丰,洪常久.八宝井田地质构造特征及成因分析[J].中国煤炭地质,2008,20(7):7-9.
    [118]王伟锋,陆诗阔,孙月平.辽西地区构造演化与盆地成因类型研究[J].地质力学学报,1997,3(3):81-89.
    [119]孙加鹏,张兴洲,杨宝俊,中国东部中新生代盆地成因及其地球动力学,世界地质,1997,16(3):1-5.
    [120]王小凤.郯庐断裂带[M].徐州:地质出版社,2000,第1版.
    [121]吉林省一零二煤田地质勘探队.浑江煤田构造分析及远景预测[J].煤田地质与勘探.1976,30-31.
    [122]《煤、泥炭地质勘查规范》DZ/T0215-2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700