用户名: 密码: 验证码:
景电灌区水盐运移对局域水土资源影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北干旱区土地资源丰富,光热条件充足,受水资源短缺和干旱少雨的气候制约,大片适宜耕种的土地长期荒芜。随着我国人口的快速增长,西北干旱区的水土资源得以快速地开发利用,特别是随着电力提水设备和引水灌溉技术的发展,在我国西北地区建成了许多高扬程的扬水灌区,这些灌区的出现和发展,从生态景观角度来看,是在原有的天然荒漠上建起了大面积的人工绿洲,在创造了巨大的经济效益、生态效益和社会效益的同时,由于灌区粗放灌溉,有灌无排致使局地出现了一些不良生态环境问题,如土壤次生盐渍化、天然植被衰败、地下水质恶化等,这种人工灌溉造成的局域水土环境演化和变迁,在一定程度上制约着灌区经济的持续、稳定、健康发展。所以,研究扬水灌区的灌溉水转化规律,及时掌握灌区土壤水盐的运移动态,同时研究灌区的水盐运移与局域水土环境变迁的耦合关系对指导灌区可持续发展和科学管理具有重要现实意义。
     本文以甘肃省景泰川电力提水灌区为研究区域,通过对灌区发展40年来局域水土资源变迁过程的现场调查和环境监测资料分析,将地表水的转化模型和地下水盐的运移模型结合起来,采用理论研究、现场试验、数值模拟等综合研究方法,深入研究了灌区的水盐运移规律、模拟了灌区不同水文地质单元的地下水动态、分析计算了灌区的水盐平衡状况,研究了人工扬水灌溉对区域水土环境变迁的影响,得出了如下结论:
     (1)甘肃省景电灌区地处我国西北内陆干旱区,灌区内士地资源丰富、光热条件充足,气候干旱少雨,水资源极度匮乏,特殊的地理位置和气候条件决定/了水资源是该地区工农业生产的决定性要素,而灌区内最大的水资源量来自于灌区引水灌溉,长期的人工灌溉引起了区域水土资源的变迁和水环境的演化,研究该区域的水盐运移对局域水土资源的影响具有很好的代表性。
     (2)干旱区扬水灌溉对局域水土资源变迁的影响同时具有正面效应和负面效应。扬水灌区在通过电力扬水人工灌溉建起大面积的人工绿洲,改善了局地的生态环境和生产生活环境的同时,局域水盐的演化和迁移同时伴随着部分的土地次生盐碱化和水土资源的退化等负面效应。
     (3)景电灌区的地表水和地下水的转化具有明显的特点,灌区水循环系统经过了跨区域引水—灌溉入渗—地下水—潜流运移或消散这样大面积的集中转化过程。灌溉水的入渗是地下水的主要补给源,占地下水补给量的75.9%,大气降水补给仅占地下水总补给量的5.38%,潜流补给量占地下水补给量的15.3%;径流补给量占地下水补给量的3.42%。
     (4)灌区实际的土壤水盐在运移过程中,主要受灌溉入渗和土壤水蒸发两种条件的影响,本文以入渗和蒸发条件下的非饱和渗流理论为基础,建立了饱和—非饱和土壤水的运动模型,同时建立了土壤溶质运移的饱和—非饱和带中水动力弥散方程以及灌区土壤溶质弥散的水质模型。
     (5)灌溉水在土壤入渗过程中受土壤结构、灌水次数、灌水量等多个因素的影响,入渗过程复杂多变、土壤盐分以灌溉入渗水为载体运移。在常年多次灌溉入渗的情况下,灌区表层耕地均出现脱盐的趋势和动态,这些盐分随灌溉水的入渗被逐渐转化为潜水含盐,并随地下水的运动而不断转移。
     (6)灌区内封闭型的水文地质单元水盐运移具有径流滞缓、水盐积累的特点。一般从外围向盆地中心逐渐形成了潜水交替相对流畅的灌溉入渗带、溶质迁移带,并逐渐转化为潜水交替迟缓的汇水聚盐带;各运移带内的地下水位变化随灌溉阶段不同呈规律性变化,灌溉入渗带地下水位年内的变化与灌溉高峰期(5-10月)一致,最大的变幅达3.6m,溶质迁移带变化趋势与灌溉入渗带呈滞后性的相似变化,年内变化幅度为0.6-1.8m,汇水聚盐带的地下水位年内变化不大。1994-2008年的地下水监测表明,在封闭型的水文地质单元内,各水盐运移带年际地下水位均呈逐年上升趋势,汇水聚盐带的年际变化最明显,灌区内最大的地下水位上升高达22.6m,溶质迁移带地下水位的累计上升为5-8m。
     (7)灌区内开敞型的水文地质单元水盐运移呈地下潜水径流通畅、溶质迁移滞缓的特点。开敞型的水文地质单元也形成入渗径流带、溶质迁移带并逐渐向潜水排泄带运移,其流向与地势变化吻合,多年地下水位累计上升幅度为1.2-4.6m,年内地下水位随灌溉水入渗量变化,变幅为0.5-2.6m。
     (8)开敞型水文地质单元和封闭型水文地质单元的地下水化学类型转化演变过程有所不同。在灌溉水入渗带和溶质迁移带的地下水水质均从低矿化度的重硫酸钙型水过渡到矿化度为2.1-5.2g/L的SO42-—Cl-—(K++Na+)—Ca2+或SO42-—Cl-—(K++Na+)—Mg2+型水,在封闭型水文地质单元的汇水聚盐区,地下水矿化度最高达273.15g/L,水化学类型为Cl-—SO42-—(K++Na+)—Ca2+型水;开敞型的水文地质单元的潜水排泄带,地下水含盐量受深层潜水水质和灌溉入渗水含盐量控制,其化学类型以为SO42-—Cl-—Ca2+—(K++Na+)型水为主。
     (9)灌区的水盐均衡计算表明,1994-2008年灌区年均引黄灌溉水量为3.89亿m3,带入灌区的年均总盐量为1.556万t;灌区内的排水沟排出的水量由1978年的0.07亿m3至2008年增高至0.237亿m3,年均带走盐量为1.68万t,其排放量比引入量高出0.12万t,灌区处于脱盐进程。从外向型转化的水量构成来看,渠道引水是灌区水量的主要来源,约占76.3%,其次为降雨带来的水量,约占18.6%,其余仅占5.1%;在排除和消耗的水量中,农林耗水所占的份额最大,约64.31%,次为荒地蒸发,占15.37%,排水沟和地下排水量,占13.37%,其余的仅占6.95%。
     (10)景电灌区的水盐演化使灌区地下水储存量每年约增加0.357亿m3,地下水水质随区域不同变化剧烈;灌区的水盐运移同时影响着灌区内的土地利用类型的时空转化,其中水浇地与沙漠土地的相互变迁的比例为71.72%。另外,水盐运移已造成次生盐碱化土地0.67万hm2,另有1.2万hm2耕地存在着盐碱化的威胁。区域景观格局由原来的荒漠景观逐步变迁为荒漠绿洲的景观格局。
     以上研究成果有望为灌区的综合治理规划、土地资源的合理配置、水资源高效利用与保护、灌区可持续发展提供科学依据,为灌区管理部门制定有关政策和决策提供可供参考的对策措施,以便更好地为扬水灌区经济建设与可持续发展服务。
China's northwest arid area has abundant land, adequate light and heat resources, while subject to long-term draught and water shortages, large tracts of arable land are desolate. Along with rapid growth of Chinese population, land resources in northwest arid area are exploited in a fast way, especially with the development of electric water pumping equipment and irrigation technology, many high-pumping irrigation zones are built in Northwest China. From the ecological perspective, the emergence and development of these irrigation zones are large area of artificial oasis building over the natural desert, creating huge economic, ecological and environmental benefits. In the meanwhile, due to extensive irrigation without appropriate discharge, adverse ecological and environmental problems arise consequently, such as soil salinization, natural vegetation decay, and deterioration of groundwater quality. These consequent environment evolution and changes have constrained the irrigation district's economy sustainability, stability and healthy development to certain extent. Therefore, it is of great significance to study the law of irrigation water transport in pumping area, grasp the dynamic migration of water and salt in soil, and also research the coupling between water-salt transport and irrigation water changes. These researches would play an important role in sustainably developing and scientifically managing irrigation area.
     The project, which focused on JingDian Electricity Pumping Irrigation District(hereafter JEPI) in Gansu Province, analyzed field investigation and environment monitoring data of the soil changes in this area within 40 years. Afterwards, I intensively studied the law of water-salt transport in irrigation area, simulated dynamic of ground water in different hydrogeological units, calculated the situation of water-salt balance, and studied the impact of artificial pumping irrigation on environmental changes. In the research, I combined the transform model of surface water with transport model of ground water, introducing several methods, such as theoretical research, field test and numerical simulation and so on. The conclusion reached from this project is as following:
     (1) JEPI is located in arid inland of Northwest China, where it is rich in land resources, sunlight and heat, and lack of rainfall and water resource. The unique geographical and climate conditions make the water resources, mainly irrigation water, the most critical factor of agriculture industry. Long-term irrigation caused regional changes in soli and water resources and environment, which is a typical case for researching the impact of water-salt transport on soil resources.
     (2) Pumping irrigation in arid areas has both positive and negative effects on transformation of local soil and water resources. On one hand, it improves local ecological environment and living environment, by building a large plateau area of oasis through electronic pumping irrigation in drought land. On the other hand, inappropriate irrigation system and long-term irrigation without reasonable drainage process leads to regional water-salt evolution and migration, accompanied part of secondary land salinization and soil degradation.
     (3) The transformation between surface water and groundwater in JEPI has remarkable features, with the water cycling system in irrigation area experiencing the concentrated transformation process of cross-regional water-irrigation infiltration-groundwater-subsurface transport or dissipate. Infiltration of irrigation water is the main recharge source of groundwater, accounting for 75.9%of groundwater recharge, while meteoric accounts 5.38%of total recharge, subsurface flow account for 15.3%; runoff recharge accounted for 3.42%.
     (4) The actual level of water and salt in the migration process is mainly affected by water infiltration, and evaporation from soil. The thesis established water movement model in saturated soil-non-saturated soil conditions, based on the unsaturated flow theory under infiltration and evaporation conditions. In the meanwhile, it established hydrodynamic dispersion equation of soil solute transport in saturated-unsaturated zone, and water quality model of soil solute dispersion.
     (5) Infiltration process of irrigation water in soil is quite complex, affected by soil structure, irrigation frequency, irrigation capacity and other factors, with soil salinity transport in the process of irrigation water infiltration. In case of perennial irrigation infiltration, the land surface are tends to be desalinated, the salinity is gradually transformed into deep water salt during the infiltration of irrigation water, and continually moving with the groundwater transport.
     (6) Water-salt transport in closed-type of hydrogeological unit shows the feature of water run-off stagnant and water-salt accumulation. In general, it gradually forms a relatively smooth irrigation infiltration zone, solute migration zone from the periphery to the center of basin, and gradually turns into a lagging irrigation infiltration zone with accumulative water and salt. Level of groundwater in migration zones changes regularly with stages of irrigation, and the changes within one year is the same with that during the irrigation peak period (May-October), the largest amplitude is up to 3.6m. The trend of changes in solute transport zone is similar to lagging change of irrigation infiltration zone, in the range of 0.6-1.8m, but change of groundwater level in water catchment-poly salt zone is small. According to the monitoring data of groundwater during 1994-2008, in closed-type of hydro geological unit, groundwater level showed an upward trend year by year in the water-salt transport zone, especially significant in the water catchment-poly salt zone, with largest increasing level by 22.6m. In the solute transport zone, the monitoring cumulative increase of groundwater level is 5-8m.
     (7) Water-salt transport in open-type of hydrogeological unit is smooth with groundwater flow,.but stagnant with solute transport. The open-type unit has also formed infiltration runoff zone, solute transport zone which gradually moving to drainage zone, with its flows coinciding with the terrain changes. For years, the cumulative rise in groundwater level ranges from 1.2-4.6m, the groundwater level changes with infiltration of irrigation water, ranged from 0.5-2.6m last year.
     (8) The process of groundwater chemical evolution differs between open-type hydrogeologicaunits and closed hydrogeological unit. In the area of irrigation water infiltration and solute transport, calcium carbonate type of groundwater with low salinity is transiting to type of 2.1-5.2g/ L of SO42-—Cl-(K++Na+)—Ca2+or SO42-—Cl-(K++Na+)—Mg2+. While in the salt-congregating drainage district of closed unit, groundwater salinity is up to 273.15g/L, with head water chemistry type of SO42-—Cl-—Ca2+—(K++Na+).
     (9) The data of water-salt balance in irrigation district shows that average annual irrigation water from Yellow River is 389 million m3 from 1994 to 2008, bringing to the area extra 15,560 tons of salt annually. The water discharged from the drain rises from 700 million m3 in year 1978 to 23.7 million m3, with average 16,800 tons of salt taking away annually, which means the irrigation is in the condition of desalination. From the perspective of export-oriented water composition, irrigation from channel is the main source of water, accounting for 76.3%, followed by rain water brought about 18.6%, and 5.1%from other process. Among the way of water exclusion and consumption, agriculture and forest take the largest share of 64.31%, followed by 15.37%from wasteland evaporation,13.37 from gutters and underground discharge, and the remaining 6.95%of others.
     (10) Due to water-salt evolution in the JEPI, the storage of groundwater increases by about 035.7 million m3 per year, with dramatic differences of groundwater quality among regions. The water-salt transport also affects the spatiotemporal transformation among different land types, e.g. the transformation ratio between irrigated land and desert is 71.72%. In addition, water-salt transport has resulted in 6,700 hm2 of secondary salinizated land, and another 12,000 hm2 arable land under threat of salinization. The previous desert landscape before introduction of irrigation gradually switches to oasis land.
     The results above are expected to provide science basis for the integrated management of irrigation, rational allocation of land resources, utilization and protection of water resources, and sustainable development model for irrigation area. Besides, it advanced several alternative references for administration departments to formulate relative policy or decision, in order to better serve economic construction and sustainable development in Pumping Irrigation District.
引文
[1]王浩,秦大庸等.西北内陆干旱区生态环境及其演变趋势[J].水利学报,2004(8):8-14.
    [2]邱林,徐建新等.区域水资源可持续利用管理理论与应用[M].黄河水利出版社.2003,11.
    [3]康绍忠,马效益等.21世纪的农业水土工程[J].干旱地区农业研究,1999(3):1-6.
    [4]李韵珠,李保国.土壤溶质运移[M].科学出版社.1998.
    [5]杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报,1999,19(6):11-15.
    [6]许鹏.新疆荒漠区草地与水盐植物系统及优化生态模式[M].科学出版社,1998.
    [7]俞仁培,陈德明.我国盐碱土资源及其开发利用[J].土壤通报,1999,30(40):158-159
    [8]吕殿青,王文焰,王全九.入渗与蒸发条件下土壤水盐运移的研究[J].水土保持研究,1999,6(2):61-66.
    [9]王尊亲等.中国盐渍土[M].科学出版社,1993.
    [10]杨金忠,叶自桐等.野外非饱和土壤中溶质运移试验研究[J].水科学进展,1993,4(4):245-252.
    [11]徐力刚,杨劲松,徐南军等.农田土壤水盐运移理论与模型研究进展[J].干旱区研究,2004,21(3):254-258.
    [12]方生,陈秀玲.防治灌区土壤盐碱化与水资源开发利用[J].河北水利科技,1997,vol18(2).
    [13]Swaminathan,M.S.Building national and global food security system.In:Global Aspects of Food Production,Oxford University Press,Oxford,1987(12):417-449
    [14]Brigham Young University—Environmental Modeling Research Laboratory. Groundwater Modeling System Tutorials Volumel.2002.
    [15]徐利岗,周宏飞,李彦等.中国北方荒漠区降水稳定性与趋势分析[J].水科学进展,2008,vol19(6):786-797.
    [16]李保国,李韵珠,石元春.水盐运动研究30年[J].中国农业大学学报,2003,8:5-19.
    [17]杨建锋,万书勤,邓伟,张光新.地下水浅埋条件下包气带水和溶质运移数值模拟研究评述[J].农业工程学报,2005,21(6):158-165.
    [18]武之新,卢赞民.黄淮海平原(沧州)类型区盐渍土的现状特点及利用改良对策.中国土地退化防治研究论文集,1990.
    [19]Iwata S.Driving force for water migration in frozen clayed soil[J].Soil Science and Plant Nutrition,1980,26:215-227.
    [20]H.J.G Dierseh.Finite Element Subsurface Flow & Transport Simulation System Reference Manual Institute for water Resource Planning and System Research.2005.
    [21]李怒云,龙怀玉.植树造林与21世纪我国盐渍土开发利用的关系[J].北京林业大学学报,2000,22(3)99-100.
    [22]石元春.盐渍土的水盐运动[M].北京:北京农业大学出版社,1986.
    [23]吕岁菊,李春光.土壤水—盐运移规律数值模拟研究综述[J].农业科学研究,2005,26(1):80-84.
    [24]W.R.Walker,Guidelines for designing and evaluating surface Irrigation system. Irrigation and drainage.FAO.1989:40-137
    [25]McDonald G.Michael and Arlen W.Harbaugh.A modula three dimensional fnite. difference groundwater flow model,United States Government printing Office, Washington,1988.
    [26]Harlan,R.L.Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resoures,1973.9(5):1314-1323
    [27]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].科学出版社,1993,1.43-48.
    [28]李新等,塔里木河上游地区土壤水盐变化与作物的关系[J],干旱区地理,1997,Vol20(4).
    [29]魏新平,王文焰,王全九等.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998,17(4):58-63.
    [30]姚德良,李新.塔里木盆地绿洲农田土壤水盐运动动力学模式研究[J].干旱区地理,1998,21(1):10-17.
    [31]Peira L S,Trout T J.Irrigation Methods[A].In:Handbook of Agricultural Engineering,Land and Water[C].CIGR,1998,(1):297-379.
    [32]李国振,塔里木河流域绿洲边缘土壤蒸发与积盐的初步分析[J],干旱区地 理,1998,Vol 21(1).
    [33]陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究[J].水利学报,1996,(1).
    [34]Awit Zerihum, Zhi Wang,Suman Rimal,etal. Analysis of surfance irrigation performance terms and indices[J].Agricultural water Management,1997,34: 25-46
    [35]Beverly L.Herzog.David.R.Larson,etc. Hydrostratigraphic Modeling of a complex.Glacial-Drift.Aquifer System for Importation into Modflow.Ground Water,2003,57-65
    [36]Yang DaiQuan, Shen Zhujiang.Modelling fully coupled moisture,air and heat transfer in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2000.22(3):357-362
    [37]俞仁培,尤文瑞.土壤盐化、碱化的观测与防治[M].科学出版社,1993,44-45.
    [38]李韵珠,张富仓,陆锦文.水平土柱法测定盐分扩散-弥散系数的探讨[M].北京农业大学出版社,1986.
    [39]张瑜芳.土壤水运移理论的研究和应用[J].灌溉排水,1992,11(1):1-7.
    [40]US Dept of Agriculture. Methods for Evaluation Irrigation System[M].US Government Printing Office,1969.
    [41]Kook.J.B, J.C.Parker, M.TH. Van Genuchten. Parameter estimation for unsaturated flow and transport models-A review[J].Journal of Hydrology, 1978.91:255-293.
    [42]Kachanoski,R.G.,Pringle E,and Ward A L,Field measurement of solute travel times using time domain reflectometry,Soil Sci.Soc.Am.J.1992,56:47-52.
    [43]李法虎.土壤中水、热、溶质运移的研究现状及展望[J].灌溉排水,1994,13(1):7-9.
    [44]Manual Martin Rodriguez, Francisco Javier Saez Fernandez. Evaluation of Irrigation Projects and Water Resource Management:a Method ological Proposal [J]. Sustainable Development,2002,(10):90-102.
    [45]Dane.J.H.and S.Hruska.In-situ determination of soil hydraulic properties during drainage[J].Soil Science Society of America Journal,1983.47:619-624
    [46]樊贵盛等,地下水埋深对冻融土壤水分入渗特性影响的实验研究[J],水利 学报,1999(3).
    [47]刘千枝.景电灌区植被类型对风沙流结构的影响[J].甘肃林业科技.1997,(3):13-17.
    [48]Johnsson P-E,simulation model for soil water and heat conditions,Swedish University of Agricultural Sciences,ISSN 0348-1816,1991.
    [49]王水献,周金龙,董新光.地下水浅埋区土壤水盐试验研究.新疆农业大学学报,2004,(3):52-56.
    [50]Kook.J.B., J.C.Parker, M.TH.Van Genuchten.Determining soil hydraulic properties from one-step outflow experiments by parameter estimation:I.Theory and numerical studies[J].Soil Science Society of America Journal,1985. 49:1348-1354
    [51]丁峰,高志海,魏怀东.景电二期工程上水前后土地利用变化及生境评价[J].水土保持学报.2004,6.Vol18(351):149-153
    [52]刘思春,吕家珑,张一平等.非饱和土壤水力运动与热力学函数关系初探[J].土壤学报,2000.37(3):388-396
    [53]姚德良,朱进生,谢正桐等.土壤水盐运动模式研究及其在干旱区农田的应用[J].中国沙漠,200121(3):286-290.
    [54]Fried J J,Combarmous M A.1971,Dispersion in porous media.Adv.Hydrosci.7: 169-282.
    [55]Groo t,J.J.R.,andW illigen,P.De.,Simulat ion of the nit rogen balance in the soil and a winter wheat crop,Fert.Res,1991,27:261-272,
    [56]王继和,刘虎俊.加拿大阿尔伯达省盐渍化土地治理与研究[J].干旱区研究,1999(16).286-290.
    [57]刘千枝,王辉.景电灌区脆弱生态环境对农业生产的影响.甘肃农业大学学报.1996,12,vol(4):384-390
    [58]Dhananpala,A.H.,Simulation of soil water regime,Application of the SWATRE model to maize crop on the reddish brownearths in the dry zone of SriLanka, Agri.Sys.,38:61-73,1992.
    [59]杨建锋,李宝庆,马瑞等.地下水浅埋区土壤水分运动参数田间测定方法探讨[J].水文地质工程地质,2000.1:1-4
    [60]张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.53-59.
    [61]Abd El Ghani MM,environmental correlates of species distribution in arid desert ecosystems of eastern Egypt,Journal of arid environments,1998,38:2,297-313.
    [62]Leij F J,Dane J H.Movment method applied to solute with binary and ternary exchange.Soil Sci.Soc.Am.J.,1992,56:667-674.
    [63]王福利.用数值模拟方法研究土壤水盐动态规律[J].水利学报,1991(1):1-9.
    [64]李朝刚,杨虎德.干旱高扬黄灌区盐碱地恢复治理.干旱区研究,1999,16(1):16(1):57-62
    [65]Dougill AJ et al,soil water movement and nutrient cycling in semi-arid rangeland: vegetation chang and system resilience,Hydrological processes,1996,32(4): 1013-1022.
    [66]唐立松,张佳宝,程心俊.GIS与土壤溶质运移模型结合研究进展[J].干旱区研究,2002,25(2):176-182.
    [67]Holger Maier&Graeme Dandy,The use of artificial neural networks for the prediction of water qualit parameters[J].Water resources research,1996,32 (4):1013-1022.
    [68]Bresler E,Naor A.Estimating transport parameters in soils by maximum likelihood.Soil Sci.Soc.Am.J.,1987,51:870-875.
    [69]隋红建,饶纪龙.土壤溶质运移的数学模拟研究现状以及展望[J].土壤学进展,1992,(5):1-6.
    [70]Seghieri J et al,relationships between soil moisture and growth of herbaceous plants in a natural vegetation mosaic in Niger,Journal of arid environments, 1997,36:1,87-102
    [71]Shao M,Horton R,Miller R K.1998,An approximate solution to the convection-dispersion equation of solute transport in soil.Soil Sci.,163(5):339-345.
    [72]田长彦等.21世纪新疆土地盐渍化调控与农业可持续发展研究建议[J].干旱区地理,2001,23(2).
    [73]Glaser PH etal, regional linkages between raised bogsand the climate, groundwater,and landscape of north-western Minnesota,Journal of ecology oxford,1997,85:1,3-16
    [74]李金花,王刚,王辉.景电灌区新绿洲景观格局分析.草业学报.2004,8.vol13(4):112-116
    [75]姚良德,朱进生,谢正桐,等.土壤水盐运动模式研究及其在干旱地区农田的应
    用[J].中国沙漠,2001,21(3).
    [76]高新科,张富仓.非饱和的土壤溶质运移数值模拟的初步研究[J].西北农业大学报,1996,24(2)66-70.
    [77]杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展[J].水科学进展,1998,509(1):84-98.
    [78]刘千枝,王辉.景电灌区新绿洲可持续发展初探.中国沙漠.1997,3.vol17(1):27-31.
    [79]胡安焱,高瑾,贺屹,等.干旱内陆灌区土壤水盐模型[J].水科学进展,2002,13(6):726.
    [80]Berkowitz,B H Scher.On characterization of anomalous dispersion in porous and structured media. Water Resour.Res.1995,31 (6):1461-1466.
    [81]Lapenis AG;Shabalova MV,global climate changs and moisture conditions in the intracoritinental arid zones,Climatic change,1994,27:3,283-297
    [82]Kemblow M W,J C Wen.Contaminant spreading in stratified soils with fractal permeability distribution.Water Resour.Res.1992,29(2):419-425.
    [83]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报,1982(2):10-12.
    [84]蔡树英,杨金忠.考虑不动水体存在时区域水盐动态预测预报方法[J].武汉水利电力大学学报1993(6):268-275.
    [85]Owe Metal,modelling of longterm surface moisture and monitoring vegetation response by satellite in semi-arid Botswana,Geojournal,1993,29:4,335-342
    [86]Neuman S P.On advective transport in fractal permeability and velocity field. Water Resour.Res.,1995,31 (6):1455-1460.
    [87]黄领梅,沈冰.水盐运动研究述评[J].西北水资源与水工程.2000,11(1):6-9.
    [88]王超,顾斌杰.非饱和土壤溶质迁移转化模型参数优化估算[J].水科学进展,2002.13(2):184-191
    [89]Kremer RG;Running SW,simulating seasonal soil water balance in contrasting semi-arid vegetation communities,Ecological modelling,1996,84:1,151-162
    [90]Christakos G,D T Hristopulos,C T Miller. Stochastic diagrammatic analysis of groundwater flow in heterogeneous porous media.Water Resour. Res.1995, 31(7):1687-1703.
    [91]陈启慧,郝振纯,冯杰.农田大孔隙对土壤水运动和溶质运移的影响研究[J].
    灌溉排水,2001.20(4):1-4
    [92]叶自桐.利用盐分迁移函数模型研究入渗条件下土层的水盐动态[J].水利学报,1990(2):1-8.
    [93]Lo Seen D et al,an approach to couple vegetation functioning and soil-vegetation-atmosphere-tranfer models for semiarid grasslands during the HAPEX-Sahel experiment,Agricultural and forest meteorology,1997,83:1,49-74
    [94]Helling,C.S.,Gish,T.J., Physical and chemical processes affecting preferential flow.In Preferential Flow Proc National Symposium.T.J, Gish,Shirmohamma di,eds. American Society of Agricultural Engineers,St Joseph,MI,1991,77.
    [95]胡玉枝.景泰电力提灌工程人工绿洲环境效益分析[D].兰州大学,2007,6.:1-49
    [96]钟瑞森,干旱绿洲区分布式三维水盐运移模型研究与应用实践[D],新疆农业大学,2008.4.
    [97]李广辉,魏世强.土壤溶质运移特性研究进展[J].土壤通报,2003,34(6)576-578.
    [98]N.Katerji et al.,Salt tolerance classification of crops according to soil salinity and to water stress da index[J].Agricultural water management,2000,43:99-109.
    [99]Milton SJ,spatial and temporal patterns in the emergence and survival of seedlings in arid Karoo shrubland,Journal of applied ecology,1995,32:1, 145-156
    [100]Coats K H and Smith B D.I Dead-end pore volume and dispersion in porous media.Soc.Pet.Eng.J.,964,4:73-84.
    [101]豆林.景泰灌区草窝滩盆地30年以来水环境变化分析.[D].兰州大学,2006,6:1-36
    [102]Hobbs TJ etal,a model of soil moisture balance and herbage growth in the arid rangelands of central Australia,Journal of arid environments,1994,28:4, 281-298
    [103]Leiting,Wu Xiaojuan,Li Guangyong,et al.Effect of drip irrigation with saline water on water use efficiency and quality of watermelons.Water Resources Management.2003,17:395-408.
    [104]Van Genuchten M Th.,A closed-from equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Sci.Soc.Am,1980,44:892-898.
    [105]王遵亲,祝寿泉,俞仁培,等.中国盐渍土.科学出版社,1993.1.
    [106]张瑜芳,张蔚臻.垂直一维均质土壤水分运动的数学模拟[J].工程勘察,1984,4:51-55.
    [107]Pan D et al,influence of edaphic factors on the spatial structure of inland halophytic communities:acase study in China,Journal of vegetation science, 1998,9:6,797-804
    [108]AyarsJ E,R B Hutmacher,RA Schoneman,D R Dettinger.Influenceof cotton canopyon sprinkler irrigation uniformity J.Transactionsof the ASAE,1991, 34(3):890-896.
    [109]陶雪松,闰月娥,周晓雷.景泰绿洲边缘荒漠草地土壤特征研究.草业科学.2009,6.vol26(6):29-34
    [110]魏由庆.黄淮海平原土壤潜在盐渍化预报分区方法.中国盐渍土分级分类文集,江苏出版社,1989,259-265
    [111]Selim H M,Kirkham D.Unsteady two-dimensional flow of water in unsaturated soils above a impervious barrier[J].Soil Sci.Soc.Am.Proc.,1973,37:489-495.
    [112]Scott A.Bradford,Scott R.Yates,Mehdi Bettahar,and Jirka Simunek.Physical factors affecting the transport and fate of colloids in saturated porous media.Water Resources.2002,38 (12):132.
    [113]李恩羊.渗灌条件下非饱和土壤水分运动的数学模拟[J].水利学报,1982.4:1-10.
    [114]Schijven,J.F.,and S.M.Hassanizadeh,Removal of viruses by soil passage: Overview of modeling, processes,andparameters,Crit.Rev.Environ.Sci. Technol.,2000,30:49-127.
    [115]Dhananpala.A.H.Simulation of soil water regime,Appliction of the SWATRE model to maize crop on thereddish brown earths in the dry zone of Sri Lanka, Agri.Sys.1992(38):61-73
    [116]黄康乐.求解二维和饱和—非饱和溶质运移问题的交替方向特征有限单元法[J].水利学报,1988,7:1-13.
    [117]Scott A.Bradford,Scott R.Yates,Mehdi Bettahar,and Jirka Simunek.Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources.2002,38(12):1327-340.
    [118]Lewan,E.Evaporation and discharge from arable land with cropped or bare soils during winter.Measurements and Simulation.Agricultural and Forest Meteorology,1993(64):131-159
    [119]朱学愚,谢春红.非饱和流动问题的SUPG有限元素数值法[J].水利学报,1994(6):37-42.
    [120]Lewan,E.Effects of a catch crop on leaching of nitrogen from a sandy soil. Measurements and Simulation,Plant and Soil,1994(166):137-152
    [121]尹建道,伊舆田朱美,生原喜久雄等.人工降水条件下土壤脱盐动态规律的实验研究[J].山东农业大学学报,2002,33(3):264-268
    [122]N.Z.Jovanovic,J.G.Annandale,A.M.van der Westhuizen.Monitoring the effect of irrigation with gypsiferous mine wastewater on cropproduction potential as affected by soil water and salt balance.Journal of the South African Institute of Mining&Metallurgy.2004,104(2):73-81
    [123]任理,李保国,叶素萍,等.稳定流场中饱和均质土壤盐分迁移的传递函数解[J].水科学进展,1999 10(2):107~112.
    [124]王遵亲.中国土壤盐碱化过程及盐碱地分布[C].国际盐碱地改良学术讨论会论文集,济南,19854-16.
    [125]宇振荣,王建武.中国土地盐碱化及其防治对称的研究[J].农村生态环境,1997(3):1-5.
    [126]孙海燕,王全九,刘建军.施钙浓度对滴灌盐碱土水盐运移特征研究.[J]水土保持学报,2008,22(1):20-23.
    [127]J.E.Ayars&M.E.Grismer et al.,Water quality as design criterion in drainage water managemen systems[J] Journal of irrigation and drainage engineering, 1997,123(3):154-158.
    [128]吕岁菊,李春光.土壤水-盐运移规律数值模拟研究综述[J].农业科学研究,2005,(1):80-84.
    [129]朱庭芸主编.灌区土壤盐渍化防治[M].北京:农业出版社,1992.62-71.
    [130]王文焰,王全九等.有限土体中再分布的土壤水盐运移试验研究[J].农业工程学报,2004,20(3):40-43.
    [131]冯广平,姜卉芳,董新光,等.干旱内陆河灌区地面灌溉条件下土壤水盐运动规律研究.灌溉排水学报,2006,3(25):82-84
    [132]Skaggs R.W.et al.Simulation of drainage water quality with DRAINMOD. Transactions of worksho on subsurface drainage simulation model,1993: 185-200.
    [133]Alva A K,Sumner M E,Miller W P,Relationship between ionic strength and electrical conductivity for soil solutions Soil Sci.A m.J.,1991,152(4):239-242.
    [134]Mondal MK,Bhuiyan SI,Franco DT.Soil salinity reduction and prediction of salt dynamics inthecoastalricelands of Bangladesh.Agricultural water Management, 2001,47(1):9-23
    [135]蔺海明.干旱半干旱地区盐渍土的形成与改良[J].世界农业研究,1999,(8):23-25.
    [136]张展羽,郭相平等.作物生长条件下农田水盐运移模型[J].农业工程学报,1999,15(2):69-73.
    [137]Srinivasulu,A.1,Rao,Ch.Sujani 2,Lakskmi,G.V.l,et al.Model studies on salt and water balancesat Konanki pilot area,Andhra Pradesh,India.Irrigation&Drainage Systems,2004,18(1):1-17
    [138]刘虎俊,王继和.临泽小泉子盐渍化沙地积盐特征及改良途径[M].兰州大学出版社,1999.22-29
    [139]Zhang R.Modeling flood and drip irrigation[J].ICID Journal,1996,45(2):81-92.
    [140]戚隆溪,逢春浩.土壤盐渍化的监测和预报研究.土壤学报,1997,34(2):189-199
    [141]李韵珠,陆景文,黄坚.蒸发条件下粘土层与土壤水盐运移[C].国际盐渍土改良学术讨论会论文集1985,12:176-190.
    [142]Gardner W R.Dynamic aspects of water availability to plant[J].Soil Sci.1960, 89:63-73.
    [143]Simunek J,Van Genuchten MT.Estimating unsaturated soil hydraulic properties from multiple tensio disc infiltrometer data[J].Soil Science.1997,162(6): 383-398.
    [144]Luo W.,R.W.Skaggs,Predicting field hydrology in cold condition with DRAIN-MOD[J].Trans ASAE,2002,44(4):825-834.
    [145]崔远来,张新,罗玉峰.稻田回归水模拟及其评价[J].灌溉排水学报,2005,(10):1-4.
    [146]张新,崔远来,董斌.回归水模拟的系统动力学模型[J].灌溉排水学报,2005,(2):57-62.
    [147]张明泉,曾正中.干旱灌区地下水基本特征与水文地质问题[J].干旱区与环境,1989,
    [148]蔡甲冰,刘钮等.甘肃景泰提水灌区作物需水量与灌溉制度研究[J].中国农村水利水电,2003,(8):35-39.
    [149]周文章.景泰县地下水资源开发利用及管理对策[J].地下水,2004,26,28-29.
    [150]李小刚,樊胜祖.以水盐平衡理论为指导防治景泰灌区土壤次生盐渍化[J].甘肃农业大学学报,1999,34(1):6-11.
    [151]汪林,甘汉,于福亮等.论银北灌区的盐害指标与排引比[J].地球学报,2001(1):91-96.
    [152]Van Genuchten M Th. A comparion of numerical solutions of the one-dimensio-nal unsaturated-saturated flow and mass transport equation. Adv Water Resour., 1982,5:47-55.
    [153]黄康乐.求解二维和饱和一非饱和溶质运移问题的交替方向特征有限单元法[J].水利学报.1988,7:1-13.
    [154]任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究[D].武汉水利电力大学,1994.6
    [155]Bolton, E.F., ETAL.1980, Com, soybean and wheat yields on Brookston clay drained by plastic tubing installed by two methods of seven spacing and two depths, Canadian Agri.Engineer,22(2).
    [156]Bresler, E., Simulataneous transport of solute and water under transient unsaturated flow conditions, Water Resourcer Research,1972(9).
    [157]Selim H M, Kirkham D. Unsteady two-dimensional flow of water in unsaturated soils above an impervious barrier. Soil Sci. Soc. Am. Proc.,1973,37: 489-495.
    [158]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [159]杨建锋,万书勤,邓伟,张光新.地下水浅埋条件下包气带水和溶质运移数值模拟研究评述[J].农业工程学报,2005,21(6):158-165.
    [160]吕岁菊,李春光.土壤水—盐运移规律数值模拟研究综述[J].农业科学研究,2005,26(1):80-84.
    [161]徐力刚,杨劲松,徐南军,黄铮.农田土壤水盐运移理论与模型研究进展[J].干旱区研究,2004,21(3):254-258.
    [162]刘昌明.土壤—植物—大气系统水分运行的界面过程研究[J].地理 报,1997,52(1):366-373.
    [163]Benbi,D.K.,P rihar,S.S.,and Cheema,W.,A model to predict changes in soilmo isture,No3-N conten and N uptake by wheat,Fert.Res,28:73-84,1991.
    [164]Groo t,J.J.R.,and W illigen,P.De.,Simulat ion of the nitrogen balance in the soil and a winter wheat crop,Fert.Res,27:261-272,1991.
    [165]Dhananpala,A.H.,Simulation of soil water regime,Application of the SWATRE model to maizecrop on the reddish brownearths in the dry zone of Sri Lanka,Agri.Sys.,38:61-73,1992.
    [166]Lewan,E.,Evaporat ion and discharge from arable land with cropped or bare soils during winter:Measurements and Simulation,A gricultural and Forest Meteoro logy,64:131-159,1993.
    [167]Lewan,E.,Effects of acatch crop on leaching of nitrogen from a sandy soil:Measurements and Simulation,Plant and Soil,166:137-152,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700