用户名: 密码: 验证码:
人类活动和气候变化对水文水资源的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有许多河川的径流量呈下降的趋势,在西北地区尤为明显。在这些趋势的变化中,如何区分人类活动和气候变化的影响程度是当前流域水文水资源和气候变化研究的热点和难点。自八十年代以来,由于人类活动和气候变化所导致的水资源的减少,使得水资源的供需矛盾日益加剧,由此带来区域生态环境的进一步恶化。伴随着现代科学技术和计算机的发展及应用,使得原来只能作定性研究的径流形成机制和过程达到数学模型模拟预报的阶段,流域分布式水文模型的改进、研发和完善,成为水文预报和规划的重要工作,在实现区域社会经济可持续发展方面具有重要作用。
     针对目前艾比湖流域存在的生态环境恶化问题,本研究选择具有长期研究基础和意义的新疆精河流域(简称流域,艾比湖流域的主要组成部分之一)为典型研究区,阐明了流域径流变化的驱动因素主要是人类活动和气候变化以及流域水文气象资料的代表性,利用1957-2008年流域的实测水文气象资料,通过使用数理统计和非参数Mann-Kendall趋势与变点检验方法等时间序列分析方法,分析了流域年平均气温、年降水量序列和年径流序列的变化趋势、变化点及各自的周期变化,探讨了流域50多年来气候和径流量的变化特征。为流域后期的水文模拟预测研究提供一定的参考依据。
     基于对流域自然环境、径流形成过程及水文特征等方面系统研究的考虑,运用区域气候模式RegCM3,选取NNRP2全球再分析数据作为初始场及侧边界条件,选择适合的物理方案,实现了有限区域的数值气象模拟和预报。以流域1957-2008年的水文气象资料为基本数据源,根据流域多年径流系数的变化特性,结合流域水文特性的分析结果,采用有序聚类法分析了流域年径流序列变化的阶段性,确定了人类活动对水文序列显著干扰的转折起始点为1981年,将1981年之前的流域水文序列视为流域天然时期。考虑到流域的实际情况,用1981年之前的实测值对分布式水文模型SWAT进行了校准和验证。
     根据校准的模型参数和1981年以后的实测气象数据及由区域气候模式RegCM3数值气象模拟结果校核的流域缺失年份的气象插值数据(简称校核的气象数据),驱动SWAT模型模拟了人类活动时期的流域径流量。基于地理信息技术(“3S”技术),结合区域气候模式RegCM3的数值气象预报结果,运用SWAT模型预测了人类活动期间流域的年径流量。基于上述计算年径流量系列,在经过论证的流域现状水平的基础上,采用水文频率分析方法,对流域未来设计情景下的年径流量进行了概率预测。
     具体研究成果如下:
     (1)运用区域气候模式RegCM3,选取NNRP2全球再分析数据作为初始场及侧边界条件,选择适合的物理方案,实现了有限区域的数值气象模拟和预报。将模拟值与流域内及附近9个站点实测的多年气温平均值和多年降水平均值进行比较分析,结果显示,各项指标误差范围都小于10%,模拟效果良好。不仅为后期流域的水文模拟预测提供理论依据和数据来源,而且也为其他流域水文预报及无资料地区的水资源管理和规划提供了重要参考。
     (2)基于“3S”技术,提取了SWAT模型所需的大量地表数据和参数信息。利用1981年之前的实测数据校准并验证SWAT模型,为消除模型中间的状态变量初始值人为因素的影响,实测资料的前三年(1957-1959年)作为模型调整期,1960-1969年为模型校准期,1970-1980年为模型的验证期。模拟结果显示,模拟值与实测值比较接近,最大相对误差不超过10%,平均相对误差小于5%,模型的效率系数E都在0.85以上。由此说明,应用SWAT模型模拟流域径流量具有较高的可信度。根据前面校准的模型参数和1981年以后的实测气象数据及校核的气象数据,运用SWAT模型模拟了人类活动时期的流域年径流量(简称模拟值)。
     (3)在前人研究成果的基础上,根据流域的实际情况,本研究提出了人类活动和气候变化对流域径流量影响程度的分离方法(简称分离法),利用流域年径流深的背景值(1981年以前的多年平均径流深)、实测值及模拟值,运用分离法定量分解出1981-2008年人类活动和气候变化对流域中下游年径流量的影响程度。并在上述研究的基础上,结合区域气候模式的数值气象预报,运用SWAT模型预测了2009-2018年流域的年径流量,使用分离法定量预测了这10年人类活动和气候变化对流域中下游年径流量的影响程度。
     通过与流域背景值进行比较分析可以看出,人类活动在80年代和近10年来对流域中下游径流量的影响最为明显,其影响程度都占流域中下游径流减少总量的85%以上;在90年代,气候因素对流域中下游径流的影响量占径流减少总量的近10%。总体来看,人类活动是使流域中下游径流减少的主因,占流域中下游径流减少总量(290.2mm)的85.7%。在气候变化的影响中,流域年降水量虽略有所增加,但气温升高使得蒸发量增加,对流域径流量减少也有一定影响。
     从流域径流量的空间分布来看,在流域上游山区,基本没有人为活动影响,气候变化是导致年径流量变化的主要因素;在流域中下游平原地区(精河水文站至精河铁路大桥),人类活动(主要是农业生产活动)是影响年径流量减少的最重要因素。
     从预测结果来看,流域自2009-2018这十年的平均入湖(艾比湖)年径流量小于1.5×108m3,加上博尔塔拉河目前的入湖(艾比湖)年径流量(不足3.5×108m3)已远远低于艾比湖最低生态阈值(5×108m3)。故艾比湖地区已出现了严重的水资源短缺和生态危机,仅仅靠流域自身通过节约用水、调整工农业生产结构及技术改造等措施已不能及时扭转这种局面,可见对流域进行生态输水势在必行。
     (4)本研究根据校准的模型参数和实测得到的较长系列降水、气温资料模拟了流域的径流过程,其代表了近期人类活动水平下“再现”1981-2008年多年降水情况下的径流量。假定1981-2008年共28年的降水具有足够的代表性,可以代表未来的降水情况,并且人类活动维持在20世纪末的水平,本研究根据该计算年径流量系列,在经过论证的流域现状水平(Cv=0.12,Cs/Cv=2.00)的基础上,采用水文频率分析方法,设计并预测了流域规划的近期和远期目标情景下的年径流量情势。结果显示:为了使保证率p=75%,近期目标要求流域的输水量为8.62×108m3,远期目标为14.39×108m3。可见,跨流域调水可以满足流域多方面的实际用水需求。
     综上所述,由于流域人口的增长和社会经济的发展以及外来人口的大量迁入,水资源开发利用强度在不断加大,尤其是人类活动大规模地开荒种地,使得流域存在严重的春季缺水现象。通过定量分析人类活动和气候变化对流域中下游年径流量的影响程度,可以看出,流域水资源紧缺的主要影响因素是人类活动造成的,再加上气温上升导致的蒸发强烈,使得流域年径流量逐年递减。
     针对流域的水文特性、水资源时空分布特征和生态环境的现状,在流域内修建水利工程,进行各种取水、蓄水、跨流域调水等行为将会直接改变河流的径流量,跨流域引水量会增加流域径流量,同时会逐渐改善整个流域的生态环境。通过以上分析和研究,结合人类活动和气候变化对流域中下游年径流量影响程度的预测结果,建议增加流域水利设施的资金投入,在流域内全面开展工农业节水型建设,有必要考虑实施跨流域调水,实施水文水资源的优化配置,从根本上解决流域内资源性缺水、季节性缺水、经济需水与生态需水矛盾等问题。
     通过该研究一方面为流域未来进一步进行径流变化趋势分析研究打下一定的理论基础,另一方面对提高流域用水效率、调节水资源时空分布不均匀、改善生态环境、发展生态可持续农业、推进区域循环经济的建设及可持续发展都具有很重要的实际意义。
Recorded runoffs in many rivers in China have been decreasing, particularly in northwest region. How to identify the quantitative effect of climate change and human activities on runoff is a hot topic, a difficulty problem as well. Since the eighties, the reduction of water resources due to human activities and climate change has intensified the contradiction of water supply and demand, also further resulted the ecological environment deterioration in the region. With development and application of modern scientific technology and computer, the original runoff that can only give qualitative study of the formation mechanism and the process has reached the stage of mathematical model simulation and prediction. To research and improve the distributed basin hydrological model, it becomes an important task in hydrological forecasting and planning, which play an important role in achieving sustainable economic development in the region.
     View of the already existing deterioration of the ecological environment in Ebinur Lake Basin, this research choose Jinghe Basin in Xinjiang (named valley, one of the main components of Ebinur Lake Basin) for the typical study area researched for a long term. It is explained that the major drivers of runoff change is climate change and human activities and that the representation of the hydrological and meteorological data in the valley. In this thesis, on the basis of hydrographical and meteorological data for 52 years (1957~2008), the variation features of precipitation and runoff and their response relationship are analyzed with the methods of nonparametric test (Mann-Kendall) and correlation analysis. This research reveals that the change characters of climate and runoff in the valley for 52 years, which can provide some reference for the further hydrological simulation study.
     This research achieved a limited area numerical meteorological prediction based on Regional Climate Model RegCM3 with regarding NNRP2 as the initial field and lateral boundary conditions and choosing appropriate physical programs. Based on the systematic study of natural environment, runoff course and hydrological characteristics in the study area, this research chose the hydrological and meteorological data from 1957 to 2008 in Jinghe Basin, and analyzed the stages of annual runoff changes using the cluster method and determined human activities affecting the hydrological sequence marked a turning point in 1981 according to change character of the annual runoff coefficient and analysis results of watershed hydrological characteristics, which is regarded the natural sequence of hydrological prior to the 1981.The average annual runoff depth is regarded as background prior to the 1981 by accounting the actual situation of the study area, and this research calibrated and validated the SWAT Model using the measured values prior to the 1981.
     It is simulated for the watershed runoff according to the calibrated model parameter and measured values after 1981 and calibrated meteorological data in missing year. The individual effect of human activities on annual runoff was forecasted combining the numerical meteorological forecast results of regional climate model RegCM3 and the spatial information technology ("3S") by SWAT model. Based on the calculation of annual runoff series and calibrated watershed situation by specialist organization, this research probably predicted annual runoff situation of Jinghe Basin under assumed scenarios by the hydrological frequency analysis method.
     Key findings include as follows:
     (1) This research achieved a limited area numerical meteorological prediction based on Regional Climate Model RegCM3 with regarding NNRP2 as the initial field and lateral boundary conditions and choosing appropriate physical programs. By comparison of the measured average values in 9 stations, simulating results showed that various indicators are less than 10% error range, forecasting results are better. Which not only provide the theoretical basis on the interpolation of the latter hydrological simulation in the study area, but also offer an important reference for hydrological forecasting, water resources management and program in the areas without data.
     (2) This research extracted a large number of surface data and parameters required by SWAT Model based on "3S" technology, and calibrated and validated the SWAT Model using measured values prior to the 1981,the model simulation period was divided into trial period (1957-1959) in order to decreasing human errors, calibration(1960-1969) and validation (1970-1980) periods. Results indicated that the annual runoff simulated by SWAT Model corresponded very well with measured values. The largest relative error is less than 10%, and the average relative error is less than 5%,all of the Nash-Sutcliffe simulation efficiency E in the model is above 0.85. Therefore, the watershed runoff simulation by SWAT Model is very feasible. The watershed runoff was simulated according to the calibrated model parameter, measured values after 1981 and calibrated meteorological data.
     (3) Based on previous study and the actual situation of the study area, the quantitative separation method of human activities and climate change on annual runoff was put forward. The individual effect of human activities and climate change on annual runoff was separated with the quantitative separation method by comparison of background values, measured values, forecasted values and the simulated values in hydrological model.
     By comparison and analysis, the results indicated that the relative impact of human activities in the downstream is the most obvious in the 80's and over the past 10 years, which reduced 85% of the total downstream reduction; the impacts of climate change on runoff is about 10% of the downstream runoff reduction in the 90's. Overall, human activities are main reasons of runoff reduction in the downstream,which is 85.7% of the downstream reduction (290.2mm). Although the impacts of climate change has a slight rise in annual precipitation, but higher temperatures makes the evaporation increase, which has affected the reduction of runoff too.
     The climate change is a major factor of runoff reduction in the mountainous catchments of the valley according to watershed runoff spatial distribution; human activities are main reasons of runoff reduction in the plain region of the valley.
     The total annual runoff of Jinghe and Bortala River flowing Ebinur Lake have been decreased under the ecological limited value (5×108m3) based on the forecasting results by specialist organization. So human beings in Ebinur Lake region have to face the lack of water resources and the environmental deterioration, it is hard to change this situation only by decreasing water waste, improving industrial and agricultural structure and technology integration and so on. Then, it is necessary to transfer water from other basin.
     (4) This research simulated runoff process according to the regulated model by the recent data and a long series of measured precipitation and temperature. This runoff process represents the "reproduction" 1981-2008 multi-year rainfall runoff according to recent level of human activity. It assumed that the precipitation of 1981-2008 can represent the future rainfall and human activities maintained the level of the late 20th century. According to the calculation of annual runoff series, this research predicted annual runoff situation in Jinghe Basin under assumed scenarios by means of the hydrological frequency analysis and based on calibrated watershed situation(Cv=0.12,Cs/Cv=2.00). Results indicated the required water quantity in basin is 8.62 x 108m3 for short-term goal and 14.39 x 108m3 for long-term goal in order to ensure the rate of p=75%. It shows that the inter-basin water Transfer may meet the actual demand water.
     In a word, as the valley population growth and socio-economic development as well as the massive shift of population from outside, the intensity of water resources development and utilization continued to increase. Particularly in large-scale human activities, land reclamation farming, which made serious water depletion in spring. By quantitative analysis of the influence of human activity and climate change on annual runoff, it can be inferred that basin water shortage is largely resulted in human activities. And the strong evaporation with rising temperatures also made valley's annual runoff quantity reduce.
     In the light of the hydrological characteristics, spatial distribution of water resources and present situation of the ecological environment in the study area, the construction of water conservancy projects in the valley such as demand water, store water and inter-basin water transfer will directly change the river runoff, And thus, the watershed runoff will increase and could also gradually improve the entire basin environment. Through the above analysis and research and the valley's annual runoff predicted results, it is recommended to increase the funding of water conservancy facilities in Jinghe Basin, to carry fully out water-saving construction in the valley. It is also necessary to implement inter-basin water transfer and the water resources optimal allocation, and to solve thoroughly the valley's water resources shortage, seasonal water scarcity, the conflicts between ecological and economic water requirement and so on.
     The process and results of this research on the one hand lay a theoretical foundation for further analysis of watershed runoff in the future. On the other hand, it offers very important practical significance in regulating the uneven spatial and temporal distribution of water resources, improving the water utilization efficiency, modifying ecological environment, developing eco-sustainable agriculture, promoting building of regional cycle economy and sustainable development.
引文
[1]黄锡荃主编.水文学[M].北京:高等教育出版社,1993:264-290.
    [2]文康.人类活动对水文的挑战.见:中国水文科学与技术研究进展学术讨论会论文集南京:河海大学出版社,2004:38-41.
    [3]粟晓玲,康绍忠等.气候变化和人类活动对渭河流域入黄径流的影响[J].Journal of Northwest A & F University(Nat.Sei.Ed.)2007,35(2):154.
    [4]王浩,秦大庸,王建华.多尺度水循环过程模拟进展与二元水循环模式的研究[M].郑州:黄河水利出版杜,2001:34-42.
    [5]许炯心,孙季.近50年来降水变化和人类活动对黄河入海通量的影响[J].水科学进展,2003,14(6):690-695.
    [6]Frederick K D,Major D C.Climate change and water resources[J].Climatic Change,1997,37:7-23.
    [7]夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学,2002,24(3):1-7.
    [8]李新.新疆内陆河流域人类活动的水文效应[C].21世纪中国水文科学研究的新问题新技术和新方法.北京:科学出版社,2001:96-104.
    [9]WMO. Pro. of world climate conference[C].WMO publ.1979.
    [10]WMO. Water resources and climatic change:sensitivity of water resources systems to climate change and variability[C]. WMO publ.1987.
    [11]WMO. WCP-water. WMO Bull,1989,38(2).
    [12]Pearman G.I. Greenhouse:planning for climate change [M].Australia:CSITO publication.1988:752.
    [13]American Association for the Advancement of Science. Climate and water:climatic variability, climate change and the planning and management of U. S. water resources. John Wiley, New York.1989.
    [14]Flato, G.M., Boer, G.J., Lee, WG,et al.The Canadian Centre for Climate Modeling and analysis global couples model and its climate[J].Climate Dynamics,2000,(16):451-467.
    [15]Cubasch U,Von Starch H,Waszkewitz J,et al.Estimates of climate changes in southern Europe using different downscaling techniques [J].Climate Research,1996,(7):129-149.
    [16]Gregory,J.M., Mitchell, J.F.B.,and Brady, A.J. Summer Drought in Northern Midlalitudes in a Time-Dependet CO2 Climate Exeriment [J].Journal of climate,1997,(10):662-686.
    [17]T.A.Fontaine J.FKlassen.Hydrological response to climate change in the black hills of south Dakota, USA[J].Hydrological sciences journal.2001,46(1):27-41.
    [18]叶守泽主编.气象与洪水[M].武汉:武汉水利电力大学出版社,1999:308-336.
    [19]施雅风主编.中国气候与海面变化及其趋势和影响—气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995.
    [20]水利部水文信息中心.“八五”国家科技攻关计划(85-913-03-03)“气候变化对中国水文水资源影响及适应对策研究”技术报告[R].
    [21]水利部水利信息中心.“九五”国家科技攻关计划(96-908-03-02)“气候异常对水文水资源影响评估模型研究”技术报告[R],2001.
    [22]水利部水文局.国家“十五”科技攻关计划(2001-BA611B-02-04)“气候变化对我国淡水资源的影响阈值及综合评价”[R],2003.
    [23]何新林,郭生练.气候变化对新疆玛纳斯河流域水文水资源的影响[J].水科学进展,1998,9(1):77-83.
    [24]陈英,刘新仁.淮河流域气候变化对水资源的影响[J].河海大学学报,1996,24(5):111-114.
    [25]郭生练,王国庆.半干旱地区水量平衡模型[J].人民黄河,1994,(12):13-15.
    [26]王建生,张世法.气候变化对京津唐地区水资源及供需平衡的影响[J].水科学进展,1996,(1):26-36.
    [27]傅国斌.全球变暖对区域水资源影响的计算分析[J].地理学报,1991,46(3):22-26.
    [28]英爱文,姜广斌.辽河流域水资源对气候变化的响应[J].水科学进展,1996,7(增刊):67-72.
    [29]邓慧平,唐来华.沱江流域水文对全球气候变化的响应[J].地理学报,1998,53(1):42-48.
    [30]范广洲,吕世华,程国栋.气候变化对滦河流域水资源影响的水文模式模拟(Ⅱ):模拟结果分析[J],高原气象,2001,23(2):302-310.
    [31]叶柏生,丁永建,刘潮海.不同规模山谷冰川及其径流对气候变化的响应过程[J].冰川冻土,2001,23(2):103-110.
    [32]王建,沈永平,鲁安新.气候变化对中国西北地区山区融雪径流的影响[J].冰川冻土,2001,23(1):28-32.
    [33]陈军锋,张明.梭磨河流域气候波动和土地覆被变化对径流影响的模拟研究[J].地理研究,2003,22(1):73-78.
    [34]王守荣,黄荣辉,丁一汇.分布式水文—土壤—植被模式的改进及气候水文offline模拟试验[J].气象学报,2002,60(3):209-300.
    [35]David A. Wiberg and Keneth M.The Impacts of Climate Change on Regional Surface Water Supply of from reservoir Storage in china,Proceedings of the 1st international Yellow River Forum on River Basin Management volume 3[M]. Zhengzhou:the Yellow River Conservancy Publishing House.
    [36]罗勇,赵宗慈.NCAR RegCM2对东亚区域气候的模拟试验[J].应用气象学报,1997,8(增刊):124-133.
    [37]Giorgi F. Sensitive of summertime precipitation over western United States to model physics parameterizations[J].Mon.Weather Rev.,1991,119:2870-2888.
    [38]Giorgi F, Mearns L O, Shields C,et al.A regional model study of the importance of the 1998 drought and the 1993 flood over the central Unite States[J].J.Climate,1996,9:1150-1162.
    [39]Seth A, Giorgi F. The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model[J].J.Climate,1998,11:2698-2711.
    [40]Giorgi F, Maromicci M R.Validation of a regional atmospheric model over Europe:sensitivity of wintertime and summer time simulations to selected physics parameterization and lower boundary conditions[J].Q.J.Roy.Meteor.Soc.,1991,117:1171-1206.
    [41]Giorgi F, Huang Y K, Niahi Q,etal.A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes[J].J.Geophys.Res.,1999,104:6324-6252.
    [42]Liu Y,Giorgi F, Washington W. Simulation of summer monsoon climate over East Asia with an NCAR regional climate model[J].Mon.Wea.Rev.,1994,122:2331-2348.
    [43]Liu Y,Avissar R,Giorgi F. A simulation with the regional elimate model RegCM2 of extremely anomalous precipitation during the 1991 East-Asian flood:An evaluation study[J].J.Geophys.Res., 1996,101:26199-26215.
    [44]Gao Xuejie,Zhao Zong-ci,Giorgi F. Changes of extreme event in regional climate simulation over East Asia[J].Advance in Atmospheric Science,2002,19(5):927-942.
    [45]Luo Yong, Zhao Zong-ci,Ding Yi-hui. Ability of NCAR RegCM2 in reproducing the dominant physical processes during the anomalous rainfall episodes in the summer of 1991 over the Yangtze-Huaihe Valley[J].Advance in Atmospheric Science,2002,19:236-254.
    [46]李巧萍,丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验[J].气象学报,2004,62(2):140-153.
    [47]Zhao Zong-ci,Luo Yong.Investigations of application for the Regional Climate Model over East China[J].Chinese Journal of Atmospheric Sciences,1999,23(5):522-532.
    [48]Gao Xue-jie,Zhao Zong-ci, Ding Yi-hui,et al.Climate change due to greenhouse effects in China[J].Advance in Atmospheric Science,2001,18(2):1224-1230.
    [49]郑益群,钱永甫,桂祈军等.初边值条件对区域气候模拟的影响[J].大气科学,2002,26(6):795-806.
    [50]Liu Hua-qiang,Qian Yong-fu,Zheng Yi-qun.Effects of nested area size on regional climate simulations[J].Advances in Atmospheric Sciences,2002,19(1):111-120.
    [51]魏和林,符淙斌,王维强等.区域气候模式侧边界的处理对东亚夏季风降水模拟的影响[J].大气科学,1998,22(5):780-790.
    [52]Giorgi F, Marinucc M R,Canio D,et al.Development of second generation regional climate model(RegCM 2):Convective processes and assimilation of lateral boundary conditions[J].Mon. Wea. Rev.,1993,121:2814-2832.
    [53]Giorgi F. Sensitivity of simulated summer time precipitation over the western United States to different physics parameterizations[J].Mon.Wea.Rev.,1991,11:2870-2888.
    [54]Giorgi F, Christine S.Test of precipitation parameterization available in latest version of NCAR regional climate model(RegCM)over continental United States[J].Journal of Geophysical Research,1995, 104:6353-6375.
    [55]丁一汇,张晶,赵宗慈.一个改进的陆面过程模式及其模拟试验研究第二部分:陆面过程模式与区域气候模式耦合的模拟试验[J].气象学报,1998,56(4):385-400.
    [56]张人禾.气候观测系统及其相关的关键问题[J].应用气象学报,2006,(17)6:30-34.
    [57]Bonan G.B., A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies:technical description and user's guide, NCAR Technical Note NCAR/TN-417+STR., National Center for Atmospheric Research, Boulder, Colorado,1996.
    [58]Dai Y., X. Zeng, R. E. Dickinson, I. Baker, G. Bonan, M. Bosilovich, S. Denning, P. Dirmeyer, P. Houser, G. Niu, K. Oleson, A. Schlosser, and Z.-L. Yang, the Common Land Model(CLM). Bull.of Amer. Meter.Soc.,84:1013-1023,2003.
    [59]Dickinson R.R., Henderson-Sellers A.,and Kennedy P.J., Biosphere-Atmosphere transfer scheme(BATS) version le as coupled to the NCAR community climate model, NCAR technical note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder,1993.
    [60]Liang Xu, and Dennis P.Lettenmaier, A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research,99(D7),14415-14428, 1994.
    [61]Liang X, Lettenmaier DP, Wood EF.One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J].Geophy. Res.101(D16) (1996),21403-21422.
    [62]姚章民.加强水文科学研究,为建设绿色珠江提供技术支撑[EB/OL].珠江水利网,(2007-4-26)[2007-4-28]http://www.pearlwater.Eov.en/zjls/detail.jsp?recid=18868.
    [63]李春晖,杨志峰.气候变化对黄河流域水资源系统影响研究进展[J].地学前缘(中国地质大学,北京),2002,(9):1.
    [64]Schultz, G.A, M. Hornbogen,P.Viterbo & J.Noilhan. Coupling larger scale hydrological and atmospheric models [M]. IAHS Special Publications,1995,30-60.
    [65]邓慧平,吴正方.气候变化对水文水资源系统影响研究综述[J].地理学报,1996,51(增刊):161-169.
    [66]《博河、精河流域规划修编报告》附件之一:博河、精河流域水资源评价及水文分析计算报告(2009年修编)
    [67]钟平安,李伟,李兴学.差积曲线径流调节计算程序设计与应用[J].水利水电技术,2003,34(11):1-3.
    [68]李荣.气候变化对黄河中游三花区间水资源的影响研究[D].2007.
    [69]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [70]姜逢清,朱诚,胡汝骥.1960-1997年新疆北部降水序列的趋势探测[J].地理科学,2002,21(6):669-672.
    [71]尤卫红,傅抱璞,林振山.云南近百年气温变化与8月低温冷害天气[J].高原气象,1997,16(1):63-72.
    [72]邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象,1997,16(1):81-93.
    [73]尤卫红,段旭,祀明辉.连续小波变换在云南近百年气温和降水变化分析中的应用[J].高原气象,1999,18(1):47-54.
    [74]杨辉,宋正山.华北地区水资源多时间尺度分析[J].高原气象,1999,18(4):496-508.
    [75]姚建群.连续小波变换在上海近100年降水分析中的应用[J].气象,2001,27(2):20-24.
    [76]林振山.气候建模、诊断和预测的研究[M].北京:气象出版社,1996,136-186.
    [77]丁裕国,江志红.气象数据时间序列信号处理[M].北京:气象出版社,1998,278-283.
    [78]魏凤英.现代气候统计诊断预测技术[M].北京:气象出版社,1999,106-113.
    [79]尤卫红.气候变化的多尺度诊断分析和预测的多种技术方法研究[M].北京:气象出版社,1998,26-42.
    [80]谢庄,曹鸿兴,李慧等.近百余年北京气候变化的小波特征[T].气象学报,2000,58(3):362-369.
    [81]章芳,苏炳凯.我国北方干旱化趋势的预测[J].高原气象,2001,21(5):479-487.
    [82]张存杰,谢金南,李栋梁等.东亚季风对西北地区干旱气候的影响[J].高原气象,2002,21(2):193-198.
    [83]李加强.天山北坡中小河川径流对气候变化的响应——以精河为例[B].中国科学院研究生院
    [84]Flato G M,Boer G J,Lee W G, et al. The Canadian Centre for Climate Modeling and Analysis Global Coupled Model and its Climate.Clim Dyn,2000,16:451-467.
    [85]Emori S,Nozawa T, Abeouchi A,etal. Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering.J Met Soc Japan,1999,77: 1299-1307.
    [86]Legutke S,Voss R. The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G (Technical Report No.18). Hamburg:German Climate Computer(DKRZ),1989.74.
    [87]Gordon H B,OFarrell S P. Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon Wea Rev,1997,125:875-907.
    [88]Murphy J M. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part Ⅰ, control climate and flux adjustment. J climate,1995,8:36-56.
    [89]John T C,Carnell R E,Crossley J F, et al. The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Clim Dyn,1997,13:103-134.
    [90]Gordon C,Cooper C,Senior C A,et al. The simulation of SST,sea ice extents and ocean heat transports in a version of the Hadley Centre Coupld model without flux adjustments. Clim Dyn,2000,16: 147-168.
    [91]Haywood, J. M.,R. J. Stouffer, R. T. Wetherald, S. Manabe, and V. Ramaswamy, Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations, Geophys. Res.Lett, 1997,24,1335-1338.
    [92]Meeh., G. A., W.M. Washington, J.M. Arblaster, T. W. Bette, and W. G. Strand, Anthropogenic forcing and climate system response in simulations of 20th and 21th century climate, J. Climate,2000,13(21): 3728-3744.
    [93]赵彦,李旭,袁重光等.IAP短期气候距平预测系统的定量评估及订正技术的改进研究[J].气候与环境研究,1999,4:353-346.
    [94]赵彦,林朝晖,李旭等.IAP/PSSCA两组预测试验的评估及比较[J].大气科学,2000,24:215-222.
    [95]Met Office:The Hadley Center Regional climate modeling system:PRECIS-Update 2002, Providing Regional Climates for Impacts Studies[R],2002,p16.
    [96]Giorgi F, Bates G. T.The climatological skill of a regional model over complex terrain. Mon. Wea. Rev,1989,117(11):2325-2347.
    [97]Giorgi F, Marinucci M. R. Validation of a regional atmospheric model over Europe:Sensitivity of wintertime and summertime simulations to physics parameters and lower boundary conditions. Q. J. Roy Meteor Soc.,1991,179:2870-2888.
    [98]Giorgi F, Marinucci M. R. Validation of a regional atmospheric model over Europe:Sensitivity of wintertime and summertime simulations to selected physics parameters and lower boundary conditions. Quart.J. Roy Meteor Soc,1991,117:1171-1206.
    [99]Jones R G, Murphy J M and Noguer M. Simulations of climate modeling change over Europe using a nested regional climate model. Assessment of control climate,including sensitivity to location of lateral boundaries Quart.J. R. Met. Soc.,1995,121:1413-1449.
    [100]Christensen, J H, Machenhauer B,Jones R G, et al. Validation of present day regional climate simulations over Europe:LAM simulations with observed boundary conditions. Technical Report 96-100,1996.
    [101]Hassell D C,Jones R G. Simulating climatic change of the southern Asian monsoon using a nested regional climate model (HadRM2).Hadley Centre Technical Note 8,Hadley Centre for Climate Prediction and Research,Met Office, Bracknell U K,1999.
    [102]Hadson.D A, Jones R G. Regional climate model simulations of present-day and future climates of southern Africa.Hadley Centre Technical Note 39,Hadley Centre for Climate Prediction and Research, Met Office, Bracknell U.K,2002.
    [103]Giorgi F. Simulation of regional climate using a limited-area model nested in a general circulation model. J.Climate,1990,3(8):941-963.
    [104]Bates G T, Giorgi F,Hostetler S. Towards the simulation of the effects of the great lakes on regional climate. Mon. Wea. Rev.,1993,121(5):1373-1387.
    [105]Grell G,Prognostic evaluation of assumptions used by cumulus parameterizations. Mon.Wea. Rev., 1993.
    [106]Hack, J. J., et al. Description of the NCAR community Climate Model (CCM2).//Tech. Note. NCAR/TN-382+STR,NCAR,Boulder,Colorado,1992.
    [107]Giorgi F, Marinucci M. R., Bates G. T. Development of a second generation regional climate model (RegCM2) Ⅰ:boundary layer and radiative transfer processes. Mon. Wea. Rev.,1993,121(10): 2794-2813.
    [108]Giorgi F, Marinucci M. R., Bates G. T., et al. Development of a second generation regional climate model (RegCM2) Ⅱ:convective process and assimilation of lateral boundary conditions. Mon. Wea. Rev,1993,121(10):2814-2832.
    [109]Bates G T,Hostetler S W,Giorgi F.Two years simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev.,1993,121(5):1505-1522.
    [110]Bates G T,Hostetler S W,Shided C B. Analysis of the surface hydrology in a regional climate model.Q. J. R. Meteor. Soc.,1994,120(515):161-183.
    [111]钱永甫,张艳,郑益群.青藏高原冬春季积雪异常对中国春夏季降水的影响[J].干旱气象,2003,21(3):1-7.
    [112]张耀存.我国北方地区植被类型变化气候效应的虚拟数值试验[J].南京大学学报(自然科学),2004,40(6):684-691.
    [113]和渊,苏炳凯,赵鸣.区域气候模式RegCM3对标量粗糙度的敏感性试验[J].气象科学,2001,21(2):136-143.
    [114]史学丽,丁一汇,刘一鸣.区域气候模式对中国东部夏季气候的模拟试验[J].气候与环境研究,2001,2(6):249-254.
    [115]刘一鸣,丁一汇,李清泉.区域气候模式对中国夏季降水的10年回报试验及其评估分析[J].应用气象学报,2005,16(增刊):41-47.
    [116]Nellie Elguindi,Xunqiang Bi,Filippo Giorgi,et al..RegCM Version 3.0 User's Guide.
    [117]Dickinson,R. E.,R.M. Errico, F.Giorgi, and G. T. Bates,1989:A regional climate model for the western United States, Climatic Change,15,383-422.
    [118]Giorgi, F.,1990:Simulation of regional climate using a limited area model nested in a general circulation model,J. Climate,3,941-963.
    [119]Giorgi,R,1989:Two-dimensional simulations of possible mesoscale effects of nuclear war fires, J. Geophys. Res.,94,1127-1144.
    [120]Giorgi,F., G. T.Bates, and S.J. Nieman,1993 a:The multi-year surface climatology of a regional atmospheric model over the western united states, J. Climate,6,75-95.
    [121]Giorgi,F.,M. R.Marinucci, and G.T. Bates,1993b:Development of a second generation regional climate model (regcm2) i:Boundary layer and radiative transfer processes, Mon. Wea. Rev.,121, 2794-2813.
    [122]Grell, G. A., J. Dudhia, and D. R. Stauffer,1994:Description of the fifth generation Penn State/NCAR Mesosca le Model (MM5), Tech. Rep. TN-398+STR, NCAR, Boulder,Colorado, pp.121.
    [123]Dickinson, R. E., P. J. Kenned y, A. Henders on-Sellers, and M. Wilson,1986: Biosphere-atmosphere transfer scheme (bats) for the ncar community climate model, Tech.Rep. NCARE/TN-275+ STR,National Center for Atmospheric Research.
    [124]Anthes, R. A.,1977:A cumulus parameterization scheme utilizing a one-dimensional cloud model, Mon. Wea. Rev.,105,270-286.
    [125]Hsie, E. Y., R. A. Anthes, and D. Keyser,1984:Numerical simulation of fronto genisis in a moist atmosphere, J. Atmos. Sci.,41,2581-2594.
    [126]Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williams on,1993:Des cription of the ncar community climate mode 1(ccm2), Tech.Rep. NCAR/TN-382+STR, National Center for Atmospheric Research..
    [127]Briegleb, B. P.,1992:Delta-eddington approximation for solar radiation in the ncar community climate model, J. Geophys.Res.,97,7603-7612.
    [128]Holtslag, A. A. M., E.I. F. de Bruijn, and H-L. Pan,1990:A high resolution air mass transformation model for short-range weather forecasting, Mon.Wea. Rev.,118,1561-1575.
    [129]Grell, G.,1993:Prognostic evaluation of as sumptions used by cumulus parameterizations, Mon. Wea. Rev.,121,764-787.
    [130]Dickinson, R. E.,A.Henders on-Sellers, and P. J. K ennedy,1993:Biosphere-atmosphere transfer scheme (bats) version le as coupled to the ncar community climate model, Tech. rep., National Center for Atmospheric Research.
    [131]Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Breigleb, D.Williams on, and P. Ras ch, 1996:Description of the near community climate model(c cm3), Tech.Re p. NCAR/TN-420+STR, National Center for Atmospheric Research.
    [132]Pal, J. S., E. E. Small, and E. A. B. Eltahir,2000:Simulation of regional-scale water and energy budgets:Representation of subgrid cloud and precipitation processes with in RegCM,J. Geophys. Res.-Atmospheres,105 (D24),29,579-594.
    [133]Zeng, X., M. Zhao, and R. E. Dickinson,1998:Intercomparison of bulk aerodynamic algoriths for the computation of sea surface fluxes using toga coare and tao data, J. Climate,11,2628-2644.
    [134]Emanuel, K. A.,1991:A scheme for representing cumulus convection in large-cale models, J. Atmos. Sci.,48(21),2313-2335.
    [135]Emanuel, K. A., and M. Zivkovic-Rothman,1999:Development and evaluation of a convection scheme for use in climat e models,J. Atmos. Sci.,56,1766-1782.
    [136]张冬峰,高学杰,赵宗慈等.RegCM3区域气候模式对中国气候的模拟[J].气候变化研究进展,2005,1(3):119-121.
    [137]刘晓东,江志红,罗树如,张雪梅,李爱华,程智等.RegCM3模式对中国东部夏季降水的模拟试验[J].南京气象学院学报,2005,28(3):351-358.
    [138]张冬峰,高学杰,白虎志,李栋梁等.RegCM3模式对青藏高原地区气候的模拟[J].高原气象,2005,24(3):714-719.
    [139]丁一汇,李巧萍等.植被变化对中国区域气候影响的数值模拟研究[J].气象学报,2005,63(5):613-619.
    [140]鲍艳,吕世华等.RegCM3模式在西北地区的应用研究[J].冰川冻土,2006,28(2):166-171.
    [141]Slingo, J. M.,1989:A gcm parameterization for the short wave radiative properties of water clouds, J. Atmos. Sci,46,1419-1427.
    [142]Deardoff, J. W.,1978:Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res.,83,1889-1903.
    [143]Giorgi,F.,X. Q. Bi,and Y. Qi an,2003a:Indirect vs. direct effects of anthropogenic sulfate on the climate of east asia as simulated with a regional coupled climate-chemistry/aerosol model, Climatic Change,58,345-376.
    [144]Giorgi, F.,R. Francisco, and J. S. P al,2003b:Effects of a subgrid-scale topography and landuse scheme on the simulation of surface climate and hydrology.part1:Effects of temperature and water vapor disaggregation, Journal of Hydrometeorology,4,317-333.
    [145]Holtslag, A. A. M., and B. A. Boville,1993:Local versus nonlocal boundary-layer diffusionin a global climate model,J. Climate,6.
    [146]Fritsch, J. M., and C. F. Chappell,1980:Numerical prediction of convectively driven mesoscale pressure systems. Part1:Convective parameterization, J. Atmos. Sci.,37,1722-1733.
    [147]Sundqvis t, H., E. Berge, and J. E. Kristjansson,1989:The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model, J. Climate,11,2698-2710.
    [148]Beheng, K. D.,1994:A parameterization of warm cloud micro physical conversion processes, Atmos. Res,33,193-206.
    [149]Hostetler, S. W., G. T. Bates, and F. Giorgi,1993:Interactive nesting of a lake thermal model with in a regional climate model for climate change studies,Geophysical Research,98,5045-5057.
    [150]Henderson-Sellers, B.,1986:Calculating the surface energy balance for lake and reservoir modeling: A review, Rev. Geophys.,24 (3):625-649.
    [151]Patterson, J. C., and P. F. Hamblin,1988:Thermal simulation of a lake with winter ice cove r, Limn. Oceanography,33,323-338.
    [152]Small, E. E., and L. C. Sloan,1999:Simulating the water balance of the aral sea with a coupled regional climate lake model, J. Geophys. Res.,104,6583-6602.
    [153]Arnold,J. G.,P.M.Allen,G..Benrhardt. A comprehensive surface-groundwater flow model[J] Jounral of hydrology.1993, (142):47-69.
    [154]Arnold,J.G., P.M. Estimating hydrologic budgets for three Illinois watersheds[J].Jounral of Hydrology,1996,176:55-77.
    [155]Srinivasan, R., Arnold, J.G., Muttiah, R.S., et al. Hydrologic Unit Model for the United States (HUMUS)[J].In:Sam S.Y.Wang(ed.) Advances in Hydro-Science and Hydro-Engineering,1993(1).
    [156]Beven K.TOPMODEL:A critique Hydrological Process.1997,(9):1069-1085.
    [157]谭炳卿,金光炎.水文模型与参数识别[M].北京:中国科学技术出版社,1998.
    [158]芮孝芳,朱庆平.分布式水文模型研究中的几个问题[J].水利水电科学进展,2002,22(3):56-58.
    [159]李硕,曾志远,张运生.环境模拟和GIS集成的初步研究[J].冰川冻土,2002,24(2):134-141.
    [160]朱雪芹等.流域水文模型和GI集成技术研究现状与展望[J].地理与地理信息科学,2003,19(3):10-14.
    [161]李志林,朱庆平.数字高程模型[M].武汉:武汉大学出版社,2003.
    [162]魏文秋,于建营.地理信息系统在水文学和水资源管理中的应用[J].水科学进展,1997,8(3):296-300。
    [163]汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000.
    [164]汤国安等.Arcview地理信息系统空间分析方法[M].北京:科学出版社,2002.
    [165]J.G.A mold, R.S.Muttiah, R.Srinivasan.,el.Regional estimation of baseflow and gorundwater recharge in the Upper Mississippi river basin[J].Journalof hydorlogy,2002(227):21-40.
    [166]Ranjan S. Muttiah, Ralph A. Wurbs. Scale-dependent soil and climate variability effects on Watershed water balance of the SWAT model [J].Journalof hy drology,2002(225):45-53.
    [167]T.A.Fontaine, T. S.Croickshank, J.G Aronldetal.Developmentof a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool(SWAT)[J].Journal of Hydrology,2002(262): 209-223.
    [168]Eckhardt,K.Haverkamp,S.Fohrer,N.;Frede,H.-G.SWAT-G,a version of SWAT99.2 modified for application to low mountain range catchments[J].Physics and Chemistry of the Earth.2002(27):641-644.
    [169]李硕.GIS和遥感辅助下流域模拟的空间离散化与参数化研究与应用.南京师范大学博士论文.2002.
    [170]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [171]郝芳华,陈利群,刘昌明等.降雨的空间不均性对模拟产流量和产沙量不确定的影响[J].地理科学进展,2003,22(5):446-452.
    [172]杨桂莲,郝芳华,刘昌明等.基于SWAT模型的基流估算及评价——以洛河流域为例[J].地理科学进展,2003,22(5):463-471.
    [173]刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-445.
    [174]王林,张明旭,陈兴伟.基于SWAT模型的晋江西溪流域径流模拟[J].亚热带资源与环境学报,2007,2(1):28-33.
    [175]王林,陈兴伟.基于3个站点校准与验证的晋江流域径流模拟[J].中国水土保持科学,2007,5(6):22-27.
    [176]Philip W.G, Manuel R.R, Colleen H.G, et al.The soil and water assessment tool:Historical development, applications, and future research directions [J]. Trans ASAE,2007,50(4):1211-1250.
    [177]Chaplot V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment and NO3-N loads predictions [J]. Journal of Hydrology,2005,312:205-222.
    [178]Chaubey I, Cotter A S, Costello T A, et al. Effect of DEM data resolution on SWAT output uncertainty[J].Hydrol Process,2005,19(3):621-628.
    [179]Diluzio M, Arnold J G, Srinivasan R. Effect of GIS data quality on small watershed stream flow and sediment simulations[J]. Hydrol Process,2005,19(3):629-650.
    [180]Tripathi M P, RaghuwanshiN S, Rao G P. Effect of watershed subdivision on simulation of water balance components[J]. Hydrol Process,2006,20:1137-1156.
    [181]Misgana K, John W N, Elias G B. Sensitivity of a distributed watershed simulation model to spatial scale[J].Journal of Hydrology Engineering,2007,12(2):163-172.
    [182]Kannan K, White S M, Worrall F, et al. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modeling in SWAT-2000[J]. Journal of Hydrology,2007,332:456-466.
    [183]Heuvelmans G, Muys B, Feyen J. Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium[J].Hydrology and Earth System Sciences,2004, 8(5):931-939.
    [184]Muleta, Misgana K, John W N. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J]. Journal of Hydrology,2005,306:127-145.
    [185]Van Griensven A,Meixner T,Grimwa D S, et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J].Journal of Hydrology,2006,324:10-23.
    [186]Narasimhan B,Srinivasan R,Arnold J G,et al. Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data[J].Trans ASAE,2005,48(3):1101-1113.
    [187]张银辉.SWAT模型及其应用研究进展[J].地理科学进展,2005,24(5):121-130.
    [188]丁飞,潘剑君.分布式水文模型SWAT的发展与研究动态[J].水土保持研究,2007,14(1):33-37.
    [189]庞靖鹏,徐宗学,刘昌明.SWAT模型应用研究进展[J].水土保持研究,2007,14(3):31-35.
    [190]梁梨丽,汪党献,王芳.SWAT模型及其应用进展研究[J].中国水利水电科学研究学报,2007,5(2):125-131.
    [191]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003,18(2):148-154.
    [192]任希岩,张雪松,郝芳华等.DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-5.
    [193]张雪松,郝芳华,张建永.降雨空间分布不均匀性对流域径流和泥沙模拟影响研究[J].水土保持研究,2004,11(1):9-12.
    [194]陈利群,刘昌明,郝芳华.站网密度和地形对模拟产流量和产沙量的影响[J].水土保持学报,2005,19(1):18-21.
    [195]胡远安,程声通,贾海峰.非点源污染模拟的空间分割优化[J].清华大学学报:自然科学版,2005,45(3):367-370.
    [196]胡连伍,王学军,罗定贵等.不同子流域划分对流域径流、泥沙、营养物模拟的影响[J].水科学进展,2007,18(2):235-240.
    [197]张东,张万昌,徐全芝.汉江上游流域蒸发量计算方法的比较及改进[J].资源科学,2005,27(1):97-103.
    [198]张东,张万昌,朱利等.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434-440.
    [199]李玉霖,崔建垣,张铜会.参考作物蒸散量计算方法的比较研究[J].中国沙漠,2002,22(4):372-376.
    [200]Amarakcon D,Chen A,Mclean P. Estimating daytime latent flux and evapotranspiration in Jamaica[J].Agricultural and Forest Meteorology,2000,102:113-124.
    [201]Qi C, Grunwald S. GIS-based hydrologic modeling in the sandusky watershed using SWAT [J].Trans ASAE,2005,48(1):169-180.
    [202]Cao Wen-zhi,William B B,Tim D,et al. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability [J]. Hydrol Process,2006,20, 1057-1073.
    [203]朱新军,王中根,李建新等.SWAT模型在漳卫河流域应用研究[J].地理科学进展,2006,25(5):105-111.
    [204]陈军锋,李秀彬.土地覆被变化的水文相应模拟研究[J].应用生态学报,2004,15(5):833-836.
    [205]郝芳华,陈利群,刘昌明等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [206]代俊峰,陈家宙,崔远来等.不同林草系统对集水区水量平衡的影响研究[J].水科学进展,2006,17(4):435-443.
    [207]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-22.
    [208]陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报:自然科学版,2004,40(2):833-836.
    [209]Arnold J. G,Srinivasan R,Ramanarayanan T S,et al.Water Resources of the Texas Gulf Basin [J].Wat. Sci.Tech,1999.39(3):121-133.
    [210]Neitsch S L,Arnold J G,Kinlry J R,et al.Soil and water assessment tool theoretical documentation: Version 2000[M].Texas:Texas Water Resources Institute,College Station,2002:3-5.
    [211]张蕾娜,李秀彬,王兆锋等.一种可用于表征土地利用变化水文效应的水文模型探讨SWAT模型在云州水库流域的应用研究[J].水文,2004,24(3):4-8.
    [212]朱新军,王中根,李建新等.SWAT模型在漳卫河流域应用研究[J].地理科学进展,2006,25(5):105-111.
    [213]陈军锋,李秀彬,张明.SWAT模型模拟摩梭河流域气候波动和土地覆被变化对流域水文的影响[J].中国科学(D辑),2004,34(7):668-674.
    [214]王中根,刘昌明等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    [215]黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报,2004,28(2):22-27.
    [216]仁立良.流域数字水文模型研究[J].河海大学学报,2000,28(4):1-6.
    [217]Hargreaves, G. L., G. H. Hargreaves. and J. P. Riley. Agricultural benefits for Senegal River Basin [J].Irrig.and Drain. Engr,1985,111(2):113-124.
    [218]Priestley,C. H. B. and R. J.Taylor. On the assessment of surface heat flux and evaporation using large-scale parameters[J].Mon. Weather Rav,1972,100:81-92.
    [219]Penman, H. L. Evaporation:An introductory survey [J]. Netheriands Journal of Agricultural Science, 1956,(4):7-29.
    [220]陈军峰.土地覆被变化对流域水文的影响—以长江上游梭磨河流域为例[D].中国科学院地理科学与资源研究所博士学位论文,2002.
    [221]黄杏元,冯劲松,汤勤.地理信息系统概论(修订版)[M].北京:高等教育出版社,2001:3-16.
    [222]朱雪芹等.流域水文模型和GIS集成技术研究现状与展望[J].地理与地理信息科学,2003,19(3):10-14.
    [223]魏怀斌,张占庞,杨金鹏.SWAT模型土壤数据库建立方法[J].水利水电技术,2000,38(6):16-18.
    [224]蔡永明,张科利,李双才.不同粒径制间土壤质地资料的转换问题研[J].土壤学报,2003,40(40):511-517.
    [225]方纲清,阮伏水,吴雄海等.福建省主要土壤可饰性特征初探[J].福建水土保持,1997,(2):19-23.
    [226]梁音,史学正.长江以南东南丘陵山区土壤可饰性k值研究[J].土壤保持研究,1999,6(2):47-52.
    [227]黄炎和,卢程隆,傅勤等.土壤质地转换模型的探讨[J].福建水土保持,1993,(1):37-40.
    [228]新疆维吾尔自治区农业厅,新疆维吾尔自治区土壤普查办公室.新疆土壤[M].科学出版社,1996:75-400.
    [229]http://www.soil.csdb.cn/.
    [230]M DiLuzio,R Srinivasan,S L Neitsch.SWAT Arcview Interface User's Guide For SWAT,98.1: 1998 Beta Release.Blackland Research Center,Texas Agricultural Experiment Station,Temple,TX, USA,1998.
    [231]王鹏.基于SWAT模型的岔路河星星哨水库以上流域径流模拟[D].吉林:吉林大学,2007.
    [232]RomanowiczA.A.,VancloosterM.,RounsevellM.et al.,2005.Sensitivity of the SWAT model to the soil and landuse data parameterization:a ease study in the Thyle catehment,Belgium [J]. Ecological modeling,187:261-289.
    [233]Tzyy-WoeiC.,2003.Modeling Hydrologic and Water quality Response of a mixed LandUse Watershed in Piedmont Physiographic[D].Graduate School of the University of Maryland.
    [234]Nash J.E.,Sutcliffe J.E.,1970. River flow forecasting through conceptual models,Part Ⅰ:A discussion of principles[J].Journal of Hydrology,10(3):282-290.
    [235]张胜利,李倬,赵文林.黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州:黄河水利出版社,1998.
    [236]汪岗,范昭.黄河水沙变化研究[M].郑州:黄河水利出版社,2002.
    [237]陈江南,王云璋,徐建华等.水土保持生态建设对黄河水资源、泥沙影响评价方法研究[M].郑州:黄河水利出版社,1998.
    [238]王国庆,贾西安.人类活动对水文序列的显著影响干扰点分析[J].西北水资源与水工程,2001,(3):13-15.
    [239]丁晶.随机水文学[M].成都:成都科技大学出版社,1988.
    [240]张秀云,姚玉璧,王润元.白龙江流域气候变化及其对水资源的影响[J].资源科学,2009,31(8):1315-1320.
    [241]艾比湖生态演变趋势和综合治理的对策研究,新疆博尔塔拉蒙古自治州专家顾问团,2000.
    [242]董雯,刘志辉.艾比湖流域水资源承载力综合评价研究[J].干旱区地理,2010,33(2):217-223.
    [243]杨立信.国外调水工程[M].北京:中国水利水电出版社,2003:1-10.
    [244]邵东国.跨流域调水工程规划调度决策理论与应用[M].武汉:武汉大学出版社,2001:4-5.
    [245]Department of Conservation and Recreation Executive Office of Environmental Affairs.A Guide to the Inter-basin Transfer Act and Regulations[R]. Prepared for the Massachusetts Water Resources Commission by Office of Water Resources:2003 Update:2-4.
    [246]高建芳,章曙明,李新贤.艾比湖流域水资源可利用量分析[J].水文,2004(5).
    [247]新疆水利厅博乐市水文水资源勘测大队.博尔塔拉河、精河流域地表水资源评价[R].1995.
    [248]博尔塔拉蒙古自治州,国土整治农业区划委员会编著.博尔塔拉国土资源[M].乌鲁木齐:新疆人民出版社,1995:62-83.
    [249]博尔塔拉蒙古自治州统计局,博尔塔拉蒙古自治州地方志编纂委员会编.博尔塔拉蒙古自治州统计年鉴[R].2004:6-9,317-321.
    [250]邓铭江.干旱区人水和谐治水思想的探讨[J].干旱区地理,2007,30(2):163-169.
    [251]李香云,杨力行.从水的载体功能看西北地区经济发展与水资源配置[J].干旱区地理,2007,30(6):946-953.
    [252]罗光明,侍克斌,张宏俊.新疆水资源利用和经济增长之间的关系[J].干旱区地理,2009,32(4):566-570.
    [253]吴得文,杨德刚,毛汉英,等.优势产业循环经济构建:以新疆阜康市为例[J].干旱区地理, 2008,31(5):779-787.
    [254]乔旭宁,杨德刚,鲁鹏,等.近25年来塔里木流域区域经济空间关联及演化特征分析[J].干旱区地理,2009,32(4):616-623.
    [255]桑学锋,周祖昊,秦大庸,魏怀斌.改进的SWAT模型在强人类活动地区的应用[J].水利学报,2008,39(12):1377-1383.
    [256]曾涛,郝振纯,王加虎.气候变化对径流影响的模拟[J].冰川冻土,2004,26(3),324-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700