用户名: 密码: 验证码:
鹤岗矿区石头河子组层序地层格架与构造控煤分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹤岗煤盆地的生成和发展经历了早白垩世早期的断陷期、早白垩世晚期的坳陷期、晚白垩世时期~古近系的裂陷期、古近纪时期的断坳期、新近纪和第四纪时期上升期5个阶段。鹤岗矿区的煤层赋存状况、矿井地质构造等均主要受控于燕山中~喜山中期构造作用的控制,盆地的形成过程是由拉张到剪切型,在后期应力场转化时,由左行张剪转化为右行压剪,使盆地西翼抬升遭到剥蚀破坏,东翼沉降倾没,埋藏保存。
     通过对构造要素的统计分析,总结了矿区构造发育的方向、成带性、等距性等规律。采用回归分析等数理统计方法等对小断层、小褶皱等构造要素进行统计分析。趋势面分析表明,南部矿区30煤层有益厚度五次趋势面呈由西向东及由北向南变薄的趋势。
     受多期运动的影响,矿区断裂构造在平面上的展布具有南北分区、东西分异的性质:北部较南部断裂密度大,构造较复杂;矿区东部发育规模较大的倾斜正断层,落差较大,使矿区地层遭到较大破坏。煤田以断裂构造为主,局部伴有平缓褶曲,并伴有多期火山喷发活动,在盆地的东部和北部,中酸性火成岩沿着断裂活动强烈。控煤构造样式可分为反斜断块型、顺斜断块型、斜交断块型、堑垒型、逆冲型五类。
     对鹤岗盆地石头河子组进行了高分辨率层序地层学分析,将石头河子组划分为1个长期基准面旋回,在长期基准面旋回中划分出5个中期基准面旋回,每个中期基准面旋回由若干个短期基准面旋回组成。短期基准面旋回包括基准面上升的非对称旋回、基准面下降的非对称旋回、对称基准面旋回3种类型。以中期基准面半旋回为基本单元研究了本区石头河子组沉积期的岩相古地理特征及其演化规律,揭示了层序岩相古地理对聚煤作用的控制。分析发现本区长期基准面旋回很好地控制了聚煤作用的演化。在长期基准面上升的过程,聚煤作用由差变好,聚煤强度由弱变强,煤层的稳定性由不稳定向较稳定或稳定发展;长期基准面下降的过程,聚煤作用由好变差,聚煤强度由强变弱,煤层的稳定性由较稳定或稳定向不稳定发展。
The growth and development of Hegang Basin have experienced 5 phases of rift epoch in the early Early Cretaceous age, depression period in late Early Cretaceous age, chasmic stage in the Late Cretaceous-Paleogene age, fault depression period in Paleogene and rising stage in Neogene and Quaternery. The distribution status, geological structure and other features of coal in Hegang Mine Area are mainly controlled by tectonism in Middle Yanshanian-Middle Himalayan Epoch. The formation of Hegang Basin has gone through such an process: first the transition from pull-apart to shear type, and then the tansformation from left-lateral tensile shear into right-lateral compressive shear type when the late tectonic stress field was changed. As a result, the west wing of the basin was uplifted and then damaged by erosion, while the left wing of the basin subsided and was plunged to be buried.
     According to the statistical analysis to the structural elements, some rules about the tectonic development in the mine area can be concluded, including the orientation, tapability and equidistance, etc. Mathematical Statistics methods, such as regression analysis and so on, are used to make an statistical analysis on tectonic elements of minor faults and minor folds. The trend surface analysis suggets that the 5 times of trend surface of favourable thickness of No.30 coal seam in the southern area of the mine show the thinning trend from west to east and from north to south.
     Influenced by multistage tectonic movements, the distribution of the fault structures in Hegang Mine on the plane is characterized by division of the north and the south, and the difference between the west and the east——compared to the southern area, fracture density is greater and structures are more complex in the northern area; at the same time, larger inclined normal faults were developed in the eastern area, with larger displacement, which caused that the strata in the mine area were greatly destroyed. The structure of the mine is mainly composed of faults, partially along with gently folds, also accompanied by multistage volcanic spurting. In the east and the north of this basin, intermediate acidity igneous rock was intensively activated along the faults. The coal controlling structures can be divided into 5 styles, namely anti-oblique fault-block style, conclinal fault-block style, oblique fault-block style, trenched style and obduction style.
     Based on the high resolution Sequence stratigraphy analysis of Shitouhezi Fm in Hegang Basin, we can divided it into one long-term base cycle, which also can be divided into 5 medium-term base cycles, made up of some short-term base cycles. Besides, short-term base cycles can be classified into 3 styles——asymmetrical cycle with rised base level, asymmetrical cycle with declined base level and symmetrical base cycle.
     Considered the medium-term base half cycle as the basic element, the research is focused on the lithofacies paleogeographic characters and their evolution laws so as to reveal the controlling roles of lithofacies paleogeography of sequence on the coal accumulation. It is discovered by the research that the long-term base cycle played an important role on controlling the coal accumulation. During the rising process of long-term base level, coal accumulation was getting better, while the intensity of coal accumulation was getting stronger, with the steability of coal bed developing better from worse. Conversely, during the descending process of the long-term based level, they worked on the contrary way.
引文
Brauner G. 1994. Rockbursts in coal mines and their prevention. Rotterdam: A. A. Balkema.
    Cross T A,Maker M R,et al..Applications of high-resolution sequence stratigraphy to reservoir analysis[J] . Proceed aligns of the 7th Exploration and Production Research Conference,Paris Technip,1993,45(1):11~33
    Cross T A,Lessenger,Sediment volume partitioning:rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation,Accepred for publication in Norwegian Petroleums Forening Conference Volume,1996
    Cross T A, Lessenger M A.Sediment volume partitioning:rationale for stratigraphic model evolution and high- resolution stratigraphic correlation.Gradstein F M,Sandvik K O, Milton N J.Sequence Stratigraphic Concepts and Applications.NPF Special Publication,1998,12(8):171~195
    Diessel F K . On the correlation between coal facies and depositional environments[A].Proceedings of the 20th Symposium[C].New South Wales: Department of Geology,University Newcastle,1986,19~22
    Diessel C F K . Coal-bearing Depositional Systems-coal Facies and Depositional Environments:8-coal Formation and Sequence Stratigraphy[M].New York:Springer-Verlag,1992:462~514
    Diessel C F K,Boyd R,Wadsdworth J,et al.On balanced and unbalanced accomodation/peat accomulation ratios in the Cretaceous coals from Gates Formation,Western Canada,and their sequence-stratigraphic significance[J].International Journal of CoalGeology,2000,43:143~186
    Fielding C R.Coal depositional models for deltaic and alluvial plain sequences[J].Geology,1987,(5): 661~664
    Galloway W E.Genetic stratigraphic sequences in basin analysis[J].AAPG Bulletin,1989,73(1):125~154
    Gary P?S, Noel N?M. Geologic Diagnosis For Reducing Coal Mine Roof Failure.?Geologic in Coal Resource Utilization Techbook. 1993
    Horne J C,Ferm J C, Caruccio F T,et al. Depositional models in coal exploration and mine planning in Appalachian Region [ J].AAPG,1978,62(12): 2379~2411
    Hower J C,Greb S F. 2005. Geologic hazards in coal mining: Prediction and prevention. Int J Coal Geol,64(1-2):1-2
    Johnson J G , Klapper G , Sandberg C A . Devonian eustatic fluctuations in Eramerica[J].Bulletin American Association Petroleum Geologists,1982,99(6):567~587
    Liu Guanghua . Petmo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South continental Plates.Internat J Gxil Genl,1990,16:73~117
    Mark C. 2005. The Coal Mine Roof Rating (CMRR)- A decade of experience. Int J Coal Geol,64(1-2):85-103
    Moor L R.The ecology of peat-forming processes:a review[J].Internat J Coal Geol,1989,12:89~103
    Phillipson. 2005. Sandin E. Effects of late Paleozoic foreland deformation on underground coal mine ground instability, Illinois and Appalachian. Int J Coal Geol,64(1-2):3-19
    Ralhmani R A,Flores F Reds.Sedimentology of coal and coal-bearings equences.Internal Assoc of Sedimentologists Special paper,1984,7:1~412
    Scott. A. C,ed.Coal and coal-bearirta strata:recent advances.GiolSoc Speacial Publication,1987,32:1~332
    Vail P R.Seismic stratigraphy interpretation using sequence stratigraphy.Part 1:Seismic stratigraphy interpretation procedure . In : Bally A W , ed . Atlas of Seismic stratigraphy.American Association of petroleum Geologists,Studies in Geology,1987,27:l~10
    Van Wagoner J C, Posamentier H W, Mitchum R M, et al.An overview of the undamentals of sequence stratigraphy and key definitions[C]. In: Wilgus C K, Hastings B S, Kendall C G, et al(eds).Sea level changes: an integrated approach. SEPM Special Publication, 1988, 42:39~46
    Van Wagoner J C,Mitchum R M et al.Siliciclastic sequence stratigraphy in well olgs,cores,and outcrops:concepts for highresolution correlation of time and facies[J].AAPG,Methods in Exploration Series,1990;(7)
    Vladislav K. 2005. Computer mapping of faults in coal mining. Int J Coal Geol,64(1-2):79-84
    Ziolkowski A,Leroill W E. 1979. A simple approach to high resolution seismic profiling for coal. Geophysical Prospecting, 27:360-393
    曹代勇、穆宣社、傅正辉,等.为现代化矿井建设服务的地质构造定量研究技术.中国煤炭地质学会煤田地质、矿井地质专业委员会编,世纪之交煤矿地质学术论文集,西安:西安地图出版社,1999,143-146
    曹代勇,张守仁,穆宣社,傅正辉. 1999.中国含煤岩系构造变形控制因素探讨.中国矿业大学学报,1999 ,28 (1) :25~28
    曹代勇,穆宣社,武清海,等. 2001.蔚县矿区断层构造定量研究.煤田地质与勘探,29(1):7-11
    曹代勇,周云霞,魏迎春. 2002.矿井地质构造定量评价信息系统的开发及应用.煤炭学报,27(4):379-382
    曹代勇. 2006.煤田构造研究———思路与方法.中国煤田地质,18 (6) :1~4
    曹代勇,王佟,琚宜文,等. 2008.中国煤田构造研究现状与展望.中国煤炭地质,20(10):1-6
    柴肇云,康天合,深部开采及其理论研究的现状与方向,山西煤炭,2004,24(3):13-15
    陈国美.高陂煤矿区控煤构造及其与煤炭资源的赋存关系,中国煤田地质,2005,17(增刊):11-13
    陈世悦,刘焕杰.华北地台东部石炭-二叠纪岩相古地理特征[J].中国区域地质,1997,16(4):379~386
    池秋鄂,龚福华.层序地层学基础与应用[M].北京:地质出版社,2001,9~40
    褚广勤,马生忠,荆惠林,等.聚煤盆地资源预测智能系统的研究,东北煤炭技术,1993,(3):54-59
    邓宏文.高分辨率层序地层学应用中的问题探析[J].古地理学报,2009,11(5):471~480
    邓宏文,王洪亮,李熙吉.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~184
    邓宏文,王红亮,阎伟鹏,等.河流相层序地层构成模式探讨[J].沉积学报,2004,22(3):373~379
    邓宏文,王洪亮,翟爱军,等.中国陆源碎屑盆地层序地层与储层展布[J].石油与天然气地质,1999,20(2):108~114
    冯增昭.单因素分析多因素综合作图法-定量岩相古地理重建[J].古地理学报,2004,6(1):3~19
    高延光,危机矿山接替资源勘查中方法技术战略思考,中国矿业,2006,15(10):P16-18
    韩德馨、杨起主编.中国煤田地质学(下册).北京:煤炭工业出版社,1980
    韩德馨.中国煤岩学[M ].徐州:中国矿业大学出版社,1996
    韩德馨,彭苏萍. 2002.我国煤矿高产高效矿井地质保障系统研究回顾及发展构想.中国煤炭,28(2):5-9
    何满潮,深部开采工程岩石力学现状与展望,第八次全国岩石力学与工程学术大会论文集[C],北京:科学出版社2004年
    何起祥,业治铮,张明书,等.受限陆表海的海侵模式[J].沉积学报,1991,9(1):1~10
    侯中健,陈洪德,田景春,等.层序岩相古地理编图在岩相古地理分析中的应用[J].成都理工学院学报,2001,28(4):376~382
    贾建称,陈健,柴宏有,张妙逢. 2008.矿井构造研究现状与发展趋势.煤炭科学技术,36(10):72-77
    姜剑虹.鹤岗盆地沉积模式与聚煤规律[J].东北煤炭技术,1996,(3):3~8
    李宝芳,温显端,李贵东.华北石炭、二叠系高分辨率层序地层分析[J].地学前缘,1999,6(增刊):81~94
    李纯杰,司黎,王志林.鹤岗煤田深部煤炭资源潜力分析研究,中国煤炭地质,2010,22(5):18-22
    李恒堂,雷宝林,杨光明. 2005我国煤矿地质保障系统技术发展现状和前景.煤田地质与勘探,33(增刊):9-13
    李耀西.大巴山西段早古生代地层志[M].北京:地质出版社,1979.1~372
    李增学,魏久传,李守春.内陆表海含煤地层层序划分及其意义[J].山东矿业学院学报,1994,13(4):327~331
    李增学,李守春,魏久传,等.事件性海侵与煤聚积规律——鲁西晚石炭世富煤单元的形成[J].岩相古地理,1995,15(1):1~9
    李增学,魏久传,金秀昆.淮南煤田二叠系高分辨率层序地层学特征[J].地层学杂志,2000,24(1):34~39
    李增学,魏久传,韩美莲.海侵事件成煤作用——一种新的聚煤模式[J].地球科学进展,2001,16(1):120~124
    刘宝珺.中国沉积学的回顾和展望[J].矿物岩石,2001(03):1~7
    刘池洋.沉积中心、堆积中心和沉降中心.第二届全国岩相古地理学术会议论文摘要集.1990
    刘德民,曹代勇. 2007.基于MapObjiects的矿井构造定量评价系统的开发应用.安徽理工大学学报,17(增刊):38-40
    刘光华.煤沉积学研究现状与动态.地学前缘,1999,6(Suppl):101~110
    刘鸿允.中国古地理图[M].北京:科学出版社,1959
    卢衍豪,朱兆玲,钱义元.中国寒武纪岩相古地理轮廓初探[J].地质学报,1965,45(4):349~357
    毛节华,许惠龙主编,中国煤炭资源预测与评价,北京:科学出版社,1999
    孟召平,王冲,彭苏萍,等.地质构造有限变形几何分析及其应用,煤炭学报,1998,23(2):119-123
    孟召平,程浪洪,雷志勇.淮南矿区地应力条件及其对煤层顶底板稳定性的影响,煤田地质与勘探,2007,35(1):21-25
    彭格林,张则有,伍大茂.泥炭与煤形成环境对比研究现状[J] .地球科学进展,1999,14(3):247~255
    彭苏萍.建立与完善我国煤矿高产高效矿井地质保障系统的几个问题.可持续发展与煤炭工业报告文集.煤炭工业出版社,1998. 19-25
    彭苏萍,中国东部深层煤炭开发中的地质灾害何今后的研究方向,第六届全国采矿学术会议文集,1999
    彭苏萍. 2008.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势.煤,17(2):1-11 [21]赵宗沛,左德堃.矿井地质,煤炭科学技术,1987,(2):14-16
    秦金波,吴顺福,王相会,等.张家口北部侏罗纪煤田聚煤规律及资源预测,地质学报,2009,83(5):738-747
    邵龙义,陈家良,李瑞军,等.广西合山晚二叠世碳酸盐岩型煤系层序地层分析,沉积学报,2003,21(1):168-174
    邵龙义,肖正辉,何志平,等.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究[J].古地理学报,2006,8(1):43~52
    邵龙义,张鹏飞,田宝霖,等.黔西织纳地区晚二叠世含煤岩系层序地层及海平面变化[J].地学探索,1993,(8):1~10
    邵龙义,张鹏飞.含煤岩系层序地层模式[J].长春科技大学学报(专辑),1998,67~70
    田景春,陈洪德,覃建雄,等.层序-岩相古地理图及其编制[J].地球科学与环境学报,2004,26(1):6~12
    童玉明.中国成煤大地构造,北京:科学出版社,1994
    王桂粱,龙荣生,徐凤银,等.矿井构造预测[M ].北京:煤炭工业出版社, 1993
    王桂梁,距宜文,郑孟林,等,中国北部能源盆地构造,徐州:中国矿业大学出版社,2007
    王鸿祯.中国古地理图集[M].北京:地图出版社,1985
    王辉,康高峰.鄂尔多斯盆地西南缘陇县地区“翘翘板”构造演化分析及其对煤炭资源赋存状况影响预测,陕晋冀煤炭学会地质测量专业学术研讨会论文集,2006
    王猛、题正义,模糊综合评判在深部煤层稳定性评价中的应用,沉积与提特斯地质,2006,26(2):68-71
    魏久传,李增学,金秀昆.淮南煤田二叠系基准面旋回划分与煤聚积规律[J].煤田地质与勘探,1999,27(5):4~9
    魏钦廉,伊海生,肖玲.陆源碎屑岩中的古土壤在地层分析中的应用[J].古地理学报,2006,8(2):211~219
    邬金华,余素玉.一个湖泊-三角洲沉积总体中泥质岩成因地层研究的元素统计分析[J].沉积学报,1996,14(1):59~68
    吴克平,刘颖鑫,鲁艳平.吉林省煤炭资源赋存规律及含煤远景,吉林地质,2008,27(2):73-78
    吴因业.煤层-一种陆相盆地中的成因层序边界[J].石油学报,1996,17(4):28~35
    夏玉成,白红梅. 2005.断裂信息维在矿井构造相对复杂程度预测中的应用.湖南科技大学学报,20:1-4
    阎海珠,朱炎銘,曹代勇. 2008.唐山矿岳胥区地质构造复杂性综合评价.煤矿深部开采地质保障技术研究与应用.徐州:中国矿业大学出版社,370-374
    徐凤银,王桂梁. 1995.矿井构造预测与评价的发展途径.中国矿业大学学报,24:68-74
    徐水师,加强煤田地质勘查、提高煤炭生产的资源保障能力,中国煤田地质,2006,18(1:1-5
    徐振永,王延斌,陈德元,等.沁水盆地晚古生代煤系层序地层及岩相古地理研究[J].煤炭学报,2007,35(4):5~11
    杨起主编.煤地质学进展.北京:科学出版社,1987
    杨起主编.中国煤变质作用.北京:煤炭工业出版社,1996
    杨起,潘治贵,翁成敏,等.华北石炭二叠纪煤变质特征与地质因素探讨[M ].北京:地质出版社, 1988
    杨子荣,姜剑虹.鹤岗盆地晚侏罗世石头河子组沉积环境及幕式聚煤作用[J].沉积学报,1997,15(3):56~61
    姚泾利,赵永刚,雷卞军,等.鄂尔多斯盆地西部马家沟期层序岩相古地理[J].西南石油大学学报(自然科学版),2008,30(1):33~37
    于恩君.黑龙江省鸡西-勃利含煤盆地层序地层学讨论[J].吉林地质,2008,27(2):8~12
    翟二安,义马煤田深部推覆构造体下勘探找煤研究,西部探矿工程,2005,(10):92-63
    翟裕生、邓军、王建平,等,深部找矿问题研究,矿床地质,2004,23(2):P142-149
    詹才高,范念寒,陆汝纶.应用等性块段指数法定量划分华北煤矿勘探类型,煤田地质与勘探,1995,(5):11-13
    张品刚,曹代勇,王强,等. 2009.东欢坨矿构造特征及断裂构造定量研究.中国煤炭地质,20(7):46
    张品刚,曹代勇,唐书恒,等.鸟山煤矿断裂构造的规律性研究,中国煤炭地质,2009,21(12):28-31
    张珊.黑龙江省东部早白垩世地层序列与盆底构造演化,吉林大学硕士学位论文,2007
    张翔,田景春,刘家铎,等.高分辨率层序地层在岩相古地理编图中的应用[J].西南石油学院学报,2005,27(6):1~4
    赵俊兴,陈洪德,向芳.鄂尔多斯盆地中部延安地区中侏罗统延安组高分辨率层序地层研究[J].沉积学报,2003,21(2):307~312
    赵明鹏.定量预测矿井断裂构造的构造力学解析法,煤炭学报,1996,21(1):6-11
    赵明鹏.煤层节理及其工程地质意义,工程地质学报,2001,9 (2):152-157
    赵宗沛,左德堃.矿井地质,煤炭科学技术,1987,(2):14-16
    周兴福,杨晓平,郝永鸿,等.鸡西盆地高分辨率层序地层研究与聚煤作用分析[J].地质调查与研究,2005,28(2):79~86
    周云霞,曹代勇.矿井地质构造定量评价模型探讨[J ] 1煤田地质与勘探, 2001 , 29 (2) : 16~18
    朱宝存,唐书恒,张佳赞,等.承德地区石炭-二叠系层序岩相古地理.中国煤炭地质,2009,21(1):5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700