用户名: 密码: 验证码:
列车荷载和冻融循环作用下冻土路基稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多年冻土区青藏铁路的建设和运营,路基下部地表温度条件发生改变,原天然地表下多年冻土水热状态失去平衡,致使路基下部多年冻土上限迁移,在长期列车荷载和冻融循环作用下,可能会影响路基稳定性。因此,应分析研究冻融循环作用下的路基水热状态,并进行路基热稳定性评价,在此基础上,研究分析长期列车荷载作用对路基稳定性的影响情况,给出未来路基稳定状态作预测。这对路基工程设计、施工及维护有指导性作用,并对铁路运营安全具有重要意义。
     本文在国家自然科学基金(50778012)支持下,研究分析了冻融循环作用对冻土特性的影响,开展了室内冻土动三轴试验研究,结合现场调研和观测结果,建立模型计算分析了冻融作用下路基温度、水分分布情况,并基于上述研究结果,计算分析了列车荷载和冻融循环作用对冻土路基稳定性影响,取得了以下几个方面的研究成果:
     (1)开展了多年冻土区段青藏铁路的粉质粘土动三轴试验,给出不同温度、含水量、围压和振动频率条件下动弹性模量、阻尼比、动摩擦角和粘聚力等物理量的变化规律,为计算参数选择提供依据。
     (2)总结了冻土常用的物理力学等各项表征量,并给出这些表征量对冻土工程性质的具体影响及相关规律。分析得出受冻融循环作用影响较大的几组物理量:干密度、含水(冰)量、弹性模量、抗剪强度、粘聚力等。分析了冻土特殊性质的主要形成过程,即土体的冻结融化过程发生的物理力学行为变化规律。基于已有的试验结果、理论研究和经验成果,给出数值计算可以参照的各项物理力学参数选取规则。
     (3)基于路基试验段实地观测结果,结合土动力学、传热学、冻土物理学等相关理论建立了冻土路基计算模型,研究了冻融循环对路基温度和含水量分布的影响,提出了基于温度和含水量的路基稳定性评价方法,并对模型路基未来50年的路基稳定状态进行了评价。
     (4)综合前述研究结果,以青藏铁路为研究对象,建立了车-轨-路基三维有限元计算模型,研究分析了列车移动荷载作用对处于冻结、融化和含冰等条件下冻土路基的影响,对长期列车荷载作用下冻土路基稳定性进行模拟计算并从土体强度和路基变形两个方面作出相应评价,为青藏铁路运营维护提供参考依据。
With the construction and operation of Qinghai-Tibet railway in permafrost regions, the surface temperature condition under subgrade has been changed, and the equilibrium state of the water and heat process in perennial-frost which under the natural surface has also been broken, which resulting the migration of upper limit for permafrost under subgrade. Under the effect of long term train load and freezing and thawing cycle, the stability of subgrade will be reduced. As a result, it is important to analysis the water and heat process in subgrade under freeze-thawing cycle and evaluates the thermal stability of subgrade. On this basis, the effect from long term train load to the subgrade stability should be studied and the steady state of subgrade in the future will be predicted. All of these play a guiding role in the design, construction and maintenance for subgrade engineering, and have great significance on the operation safety of railway.
     In support of National Natural Science Foundation of China (50778012), the effect of freezing and thawing cycle on the properties of frozen soils was studied in this paper. Both laboratory dynamic triaxial test and on-site observation for frozen soils were performed in this study. Based on the experimental results, a computational model was built to analysis the temperature and water distributions under freezing. After that, the influence of train load and freezing and thawing cycle on the stability of frozen soil subgrade was analyzed. The study contained the following main parts:
     The physical mechanics and thermodynamics characterizing quantities for frozen soils were summarized, and the influence rules of these characterizing quantities on the engineering properties of frozen soils were presented. The following quantities are greatly influenced by the freeze-thawing cycle:dry density, water content, elasticity modulus, coefficient of heat conductivity, slip resistance, cohesive strength, etc. The forming mechanism for the special properties of frozen soils was studied, that is to say, the changing law for the physical and mechanical behavior of frozen soils in the freezing and thawing process was proposed. Based on the existing experimental results, theoretical research basis and empirical achievements, the selection rule of physical mechanics parameters which used in the numerical calculations was also presented.
     To provide a basis for selecting calculating parameters, an experimental program has been developed. A series of controlled laboratory tests were carried out on silty clay samples from Qinghai-Tibet railway in permafrost regions. It is shown that the physical quantities, such as the dynamic modulus of elasticity, dynamic damping ratio, dynamic friction angle and cohesive strength, are dependent of temperature, water content, confining pressure and vibration frequency. The changing law was proposed at the same time.
     Based on the on-site observation results at experimental section, a computational model for frozen soil subgrade was established, incorporating soil dynamics, heat transfer theory and physics of frozen soils. On this basis, the effect of freezing and thawing cycle on the temperature and water distributions of subgrade was studied, and a evaluation method for analyzing subgrade stability which taking temperature and water content as indicator was proposed. Using this proposed method, the steady state for the subgrade of the established model in the next fifty years was evaluated.
     With the above results, and taking the Qinghai-Tibet railway as the object of this study, a 3D FEM model for vehicle-track-subgrade interactions was established. The effects of moving load on the frozen soil subgrade which is freezing, thawing and at iced state were analyzed. The simulations for predicting the stability of frozen soil subgrade influenced by long term train load were carried out, and the results were taken to make evaluations from both the soil strength and subgrade deformation, which providing a reference frame for the operation and maintenance of Qinghai-Tibet railway.
引文
[1]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社.2001.
    [2]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.
    [3]程国栋.青藏高原多年冻土区路基工程地质研究[J].第四纪研究.2003(02):23-30.
    [4]冉理.青藏铁路多年冻土工程的探索与实践[J].铁道工程学报,2007,(1):32-40.
    [5]吴克俭,钱征宇.青藏铁路多年冻土工程科技创新与实践[J].中国铁路,2007,(6):30-33.
    [6]陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [7]CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology,1979,13(4):73-92.
    [8]EIGENBROD K D. Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils[J]. Canadian Geotechnical Journal,1996,33(4):529-537.
    [9]VIKLANDER P,DIETER E. Stone movem ents and permeability changes in till caused by freezing and thawing[J]. Cold Regions Science and Technology,2000,31 (2):151-162.
    [10]杨平,张婷.人工冻融土物理力学性能研究.冰川冻土.2002,24(5):665-667.
    [11]杨成松,何平,程国栋,等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报,2003,22(增2):2695-2699.
    [12]王国亮,苏贺.人工冻融土的物理力学性能实验研究.山东煤炭科技.2008(4):94-95.
    [13]FREDLUND D G,BERGAN A T,SAUER E K. Deformation characterization of subgrade soils forhighways in northern environments.Can.Geotech.J.12,213-223.1975.
    [14]李国玉,马巍,李宁,等.冻融对压实黄土工程地质特性影响的试验研究[J].水利与建筑工程学报,2010,8(4):5-7,20.
    [15]AOYAMA K, OGAWA S, FUKUDA M. Temperature dependencies of mechanical properties of soils subjected to freezing and thawing[C]. Anon. Proceedings of the 4th International Symposium on Ground Freezing. Rotterdam Netherlands A.A. Balkema Publishers,1985: 217-222.
    [16]OGATA N, KATAOKA T, KOMIYA A. Effect of freezing thawing on the mechanical properties of soil [C]. Anon. Proceedings of the 4th International Symposium on Ground Freezing. Rotterdam Netherlands A.A. Balkema Publishers,1985:201-207.
    [17]VAN KLAVEREN R W. Hydraulic Erosion Resistance of Thawing Soil[D]. PhD. Thesis. Washington USA Department of Agricultural Engineering Washington State University,1987.
    [18]SIMONSEN E J,ANOOVC, ISACSSON U. Resilient properties of unbound road materials during seasonal frost conditions[J] Journal of Cold Regions Engineering,2002,16(1):28-50.
    [19]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报,2003,23(增2):2690-2694.
    [20]王大雁,马巍,常小晓,等.冻融循环作用对青藏粘土物理力学性质的影响.岩石力学与工程学报.2005,24(23):4313-4319
    [21]齐吉琳,马巍.冻融作用对超固结土强度的影响[J].岩土工程学报,2006,28(12):2082-2086.
    [22]戴文亭,魏海斌,刘寒冰,等.冻融循环下粉质黏土的动力损失模型.吉林大学学报(工学版).2007,37(4):790-793
    [23]魏海斌,刘寒冰,高一平,等.冻融循环对粉煤灰土动强度的影响.吉林大学学报(工学版).2007,37(2):329-333
    [24]冯勇,何建新,刘亮,等.冻融循环作用下细粒土抗剪强度特性试验研究.冰川 冻土.2008,30(6):1013-1017
    [25]于基宁,汪稔,谭峰屹,等.饱和粉质粘十冻融力学效应试验研究.岩土工程界.2008,11(12):48-51
    [26]陈炜韬,王鹰,王明年,等.冻融循环对盐渍土黏聚力影响的试验研究.岩土力学.2007,28(11):2343-2347
    [27]包卫星,杨晓华.冻融条件下盐渍土抗剪强度特性试验研究.公路.2008,1:5-10
    [28]姚晓亮,齐吉琳,宋春霞.冻融作用对青藏粘土工程性质的影响.冰川冻土.2008,30(1):165-169
    [29]H.A.崔托维奇.张长庆,朱元林泽.冻土力学[M].北京:科学出版社.1985:14-17.
    [30]朱元林,吴紫汪,何平,等.我国冻土力学研究新进展及展望[J].冰川冻土.1995,17(增):6-13.
    [31]赵淑萍,朱元林,何平,等.冻土动力学研究的现状与进展[J].冰川冻土.2002,(05):681-686.
    [32]何平.饱和冻结粉土的动力特性[D].中国科学院硕士研究生毕业论文.兰州:中国科学院兰州冰川冻土所冻土国家重点实验室.1992,P1-28.
    [33]张建明,朱元林,张家懿.动荷载下冻土中模型桩的沉降试验研究[J].中国科学(D辑:地球科学),1999,(S1):27-33.
    [34]齐吉琳,马巍,孙崇绍等.张掖地区季节冻土场地上的地震动效应[J].岩石力学与工程学报[J].2005,(12):2082-2088.
    [35]王丽霞.冻土动力性能与冻土场地路基地震反应研究[D].哈尔滨工业大学博士学位论文.哈尔滨:哈尔滨工业大学.2005:1-11.
    [36]CHAICHANAVONG T. Dynamic Properties of Ice and Frozen Clay under Cyclic Triaxial Loading Conditions [D]. Ph.D. Thesis. Dep. Of Civil and Sanitary Engineering, Michigan State Univ., East Lansing.1976,460.
    [37]VINSON T S, Chaichanavong T, Czajkowski R L. Behavior of Frozen Clays under Cyclic Axial Loading [J]. Journal of the Geotechnical Engineering Division, ASCE,104, GT7.1978:779-800.
    [38]VINSON T S, LI J C. Dynamic Properties if Frozen Sand under Simulated Earthquake Loading Conditions [A]. Proceeding of the Seventh World Conference on Earthquake Engineering. Turkish National Committee on Earthquake Engineering et al, Istanbul.1980,3:65-72
    [39]LI J C,BALADI G Y,ANDERSLAND O B. Cyclic Triaxial Tests on Frozen Sand [J]. Engineering Geology.1979,13(1-4):233-246.
    [40]VINSON T S,WILSON C R et al.1483. Dynamic Properties of naturally frozen silt [A]. Proceedings of 4th International Conference on Permafrost. Alaska, USA.
    [41]VOVK A A,MIKHALYUK A V,CHERNYI G I. Mechanical properties of frozen soils under dynamic loads [J].Soil Mech. Found Engineering.1980,17(2):P64-69
    [42]TING J M,MARTIN R T,LADD C C. Mechanisms of Strength for Frozen Sand [J]. Journal of Geotechnical Engineering.1983,109(10):1286-1302.
    [43]何平,朱元林,张家懿等.饱和冻结粉土的动弹模和动强度[J].冰川冻土.1993,15(1):170-174.
    [44]何平,朱元林,张家懿等.振动频率对冻土弹模之影响[A].第一届全国寒区环境与工程青年学术会议文集[C].兰州:兰州大学出版社.1994:53-55.
    [45]HE P, ZHU YL el at. Dynamic elastic modulus and strength of Saturated frozen silt[A]. Proceedings of 6th ICOP. Beijing, China.1993.
    [46]HE P, ZHU YL et al. Dynamic strain characteristics of saturated frozen silt [A].Proceedings of 7th Cold Regions Engineering Speciality Conference. Edmonton, Canada.1994.
    [47]沈忠言,张家懿.冻土退荷回弹动弹模[J].冰川冻土.1995(S1):39-44.
    [48]仲丛利.冻融场地的动力特性研究[D].哈尔滨建筑大学硕士学位论文,哈尔滨:哈尔滨建筑大学,1996:1-10.
    [49]徐学燕,仲丛利.冻土动弹模、动泊桑比的确定[J].哈尔滨建筑大学学报.1997,30(04):23-29.
    [50]朱元林,赵淑萍,何平等.冻土的动弹性参数试验研究[J].中国科学院兰州冰川冻土研究所冻土工程国家重点实验室年报.1998,8:27-32.
    [51]徐学燕,仲丛利,陈亚明等.冻土的动力特性研究及其参数确定[J].岩土工程学报.1998,20(05):77-81.
    [52]盛煜,彭万巍,福田止己.超声波技术在冻土物性测试中的应用探讨[J].冰川冻土.2001,23(4):432-435.
    [53]凌贤长,徐学燕,徐春华等.冻结哈尔滨粉质粘土超声波速测定试验研究[J].岩土工程学报.2002,24(4):456-459.
    [54]王大雁,朱元林,赵淑萍等.超声波法测定冻土动弹性模量力学参数试验研究[J].岩土工程学报.2002,24(4):612-615.
    [55]赵淑萍,何平,朱元林等.破坏时间和最小蠕变速率的影响[J].冰川冻土.2002,24(3):270-274.
    [56]施烨辉,何平,卞晓琳.青藏铁路高温冻土动力学参数试验研究[J].路基工程,2006,(05):93-95.
    [57]王兰民,张冬丽,吴志坚,马巍.地温对冻土动力特性及其场地地震动参数的影响[J].中国地震.2003,19(03):195-205.
    [58]吴志坚,王兰民,马巍等.地震荷载作用下冻土的动力学参数试验研究[J].西北地震学报.2003,(03):210-214.
    [59]高志华,赖远明,熊二刚等.循环荷载作用下高温-高含冰量冻土特性试验研究[J].岩土力学,2010,(06):1744-1751.
    [60]马巍,吴紫汪,盛煜.动土的蠕变及蠕变强度[J].冰川冻土,1994,16(2):113-118.
    [61]张长庆,何平,罗曼等.振动荷载作用下长期强度评价[J].中国科学院兰州冰川冻土所冻土工程国家重点实验室年报.1993,3:165-172.
    [62]何平,张家懿,朱元林等.振动频率对冻土破坏之影响[J].岩土工程学报.1995,17(03):78-81.
    [63]朱元林,何平,张家懿等.围压对冻结粉土在振动荷载下蠕变性能的影响[J].冰川冻土.1995,17(增),20-25.
    [64]沈忠言,张家懿.冻结粉土动强度的荷载效应及长期极限动强度[J].冰川冻土,1998,(01):42-45.
    [65]沈忠言,张家懿.振动荷载作用下饱水冻结粉土的单轴抗压强度[J].冰川冻土.1996,18(2):162-169.
    [66]沈忠言,张家懿.冻结粉土的动强度特性及其破坏准则[J].冰川冻土.1997,19(2):141-148.
    [67]赵淑萍,朱元林,何平等.冻土动力学参数测试研究[J].岩石力学与工程学报.2003,22(S2):2677-2681.
    [68]吴志坚,马巍,王兰民等.地震荷载作用下温度和围压对冻土强度影响的试验研究[J].冰川冻土.2003,25(6):648-652.
    [69]王丽霞,凌贤长,徐学燕等.青藏铁路冻结粉质粘土动静三轴试验对比[J].岩土工程学报.2005,(02):202-205.
    [70]王丽霞,凌贤长.冻土路基地震破坏判别方法研究[J].岩石力学与工程学报.2005,(04):638-642.
    [71]张淑娟,赖远明,李双洋等.冻土动强度特性试验研究[J].岩土工程学报,2008,30(4):595-599.
    [72]朱占元.青藏铁路列车行驶多年冻土场地路基振动反应与振陷预测[D].哈尔滨工业大学,2009
    [73]于洋.冻土路基列车行驶振动反应研究[D].哈尔滨工业大学,2006
    [74]高志华,石坚,张淑娟等.高含冰量冻土动强度和残余应变的试验研究[J].冰川冻土,2009,(06):1143-1149.
    [75]SINGH S, DONOVAN N C. Seismic Response of Frozen-Thawed Soil Systems. Proceedings [A], Sixth World Conference on Earthquake Engineering, Sarta Prakashan,Meerut,India.1977,111:2262-2267.
    [76]FINN D L, YONG R N. Seismic Response of Frozen Ground [J]. Journal of the Geotechnical Engineering Division. ASCE,104.1978:1225-1241.
    [77]TOKIMATSU K. Correlation of CPT data with static and dynamic properties of in-situ frozen samples[C]//Proceedings of International Symposium on Cone Penetration Testing. Linkoping: Swedish Geotechnical Society,1995,2:323-328.
    [78]刘鸿绪,孙彦福,陈亚明.季节冻土层对房屋地震破坏的影响[J].冰川冻土.1998,20(1):47-50.
    [79]LAI YM,WU ZW,ZHU YL et al. Elastic Visco-Plastic Analysis for Earthquake Response of Tunnels in Cold Regions [J]. Cold Regions Science and Technology.2000, (31):175-188.
    [80]赵淑萍.冻土的动荷载响应分析[D].中国科学院研究生院硕士学位论文.北京:中国科学院研究生院.2003.
    [81]王丽霞,凌贤长,徐学燕等.多年冻土场地路基地震响应动应力性状研究[J].地震工程与工程振动.2004,(01):117-121.
    [82]王丽霞,凌贤长,徐学燕等.多年冻土场地路基地震加速度反应谱特性研究[J].岩石力学与工程学报.2004,(08):1330-1335.
    [83]王丽霞,凌贤长,刘红艳等.多年冻土场地路基地震动位移性状研究[J].世界地震工程.2004,(02):112-116.
    [84]齐吉琳,马巍,孙崇绍等.张掖地区季节冻土场地上的地震动效应[J].岩石力学与工程学报[J].2005,(12):2082-2088.
    [85]刘志强.寒区道路工程随机温度场和动力响应的数值分析[D].中国科学院研究生院博士学位论文.北京:中国科学院研究生院.2005.P57-95.
    [86]李双洋,张淑娟,赵德安等.冻土路基动力分析模型及青藏铁路地震灾害评估[J].岩土力学,2010,(07):2179-2187.
    [87]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,(02):21-28.
    [88]车惠民,何广汉,杨德滋等.我国铁路列车荷载谱和桥梁结构效应谱的研究[J].西南交通大学学报,1990,(02):1-9.
    [89]梁波,张艳美,韩自力.京秦提速工程车-路动力仿真与试验的对比研究[J].工程力学,2004,21(1):159-164.
    [90]张碧.高速铁路路基动力响应计算中列车荷载的模拟[J].建材技术与应用,2010,(11):1-3.
    [91]胡宗允,李晶晶.地铁列车荷载分析方法[J].路基工程,2006,(05):18-20.
    [92]陈秀方.铁路桥梁列车荷载的随机过程模型[A].中国土木工程学会市政工程专业委员会第一次城市桥梁学术会议论文集[C].重庆,1987.
    [93]冯军和,闫维明.列车随机激振荷载的数值模拟[J].振动与冲击,2008,(02):49-52.
    [94]冯军和,闫维明,陈宪麦.不同列车荷载模拟方法的对比分析[J].铁道建筑,2007,(10):79-81.
    [95]肖军华.提速列车荷载下粉土的力学响应与路基稳定性研究[D].北京交通大学,2008.
    [96]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,(04):89-94.
    [97]赵学思.高速铁路路基体计算中的列车荷载模拟问题研究[J].铁道勘察,2007,(03):55-56.
    [98]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,(01):36-41.
    [99]肖军华.有砟轨道路基动力响应参数敏感性判别[J].铁道标准设计,2010(7):1-4.
    [100]周飞.高速铁路路基动力响应有限元仿真分析[J].路基工程,2010(B04):112-115.
    [101]陈建国,肖军华,李前进等.提速列车荷载作用下铁路路基动力特性的研究[J].岩土力学,2009(7):1944-1950.
    [102]孙常新,郝小红.高速铁路路基动力响应规律及其影响分析[J].中国铁路,2010(1):55-57.
    [103]孙常新,刘桂香,梁波.基于有限元方法的铁路路基动力响应场分析[J].路基工程,2008(2):28-30.
    [104]孙常新,邢矿,姜彤等.铁路路基动力响应的分布规律研究[J].华北水利水电学院学报,2007,28(4):30-32.
    [105]董亮,赵成刚,蔡德钩等.高速铁路路基的动力响应分析方法[J].工程力学,2008,25(11):231-236,240.
    [106]宗军良,刘涛,宫全美等.既有线提速路基动力响应特性研究[J].中国铁道科学,2007,28(4):7-11.
    [107]聂志红,阮波,李亮.铁路道床路基动力响应的参数影响[J].交通运输工程学报,2004,4(1):34-37.
    [108]聂志红,刘宝琛,李亮等.移动荷载作用下轨道路基动力响应分析[J].中国铁道科学,2006,27(2):15-19.
    [109]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [110]毛利军,雷晓燕.提速线路轨道过渡段动力响应分析[J].华东交通大学学报,2001,18(1):35-40.
    [111]张国祥,方万进.高速铁路涵洞附近路基动力响应试验研究[J].铁道标准设计,2005(1):49-50.
    [112]田海波,许恺.时速250km客运专线路基动力响应研究试验[J].铁道标准设计,2006(2):4-6.
    [113]刘奉喜,刘建坤,房建宏等.多年冻土区铁路隔振沟隔振效果的数值分析[J].中国铁道科学,2003,(05):48-51.
    [114]施烨辉.动荷载作用下高温冻土路基动力响应分析[D].中国科学院研究生院硕士学位论文.北京:中国科学院研究生院.2006.
    [115]SHI YH,HE P,BIAN XL.Dynamic Response of High-Temperature Frozen Soil Subgrade under Train Dynamic Loading[C].4th International Symposium on Environment Vibrations-Prediction, Monitoring, Mitigation and Evaluation,Oct 28-30,2009 Beijing,Peoples R China.Environmental Vibrations:Prediction, Monitoring, Mitigation and Evaluation, Vols 1.2009:538-542.
    [116]李双洋,张明义,张淑娟等.列车荷载下青藏铁路冻土路基动力响应分析[J].冰川冻土,2008,30(5):860-867.
    [117]常利武,徐艳杰.高温冻土路基动力响应的数值模拟研究[J].路基工程,2007(4):34-35.
    [118]李涛.青藏铁路多年冻土区路基结构的动力分析[J].铁道工程学报,2007,(03):29-32.
    [119]朱占元,凌贤长,胡庆立等.中国青藏铁路北麓河路基冻土动应变速率试验研究[J].岩土工程学报,2007,(10):1472-1476.
    [120]王立娜,凌贤长,张峰等.大庆季节冻土区冬季铁路列车行驶振动反应现场监测研究[J].中国科技论文在线,2009,(07):507-511.
    [121]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社.1996:P193-610.
    [122]周健.土动力学理论与计算[M].北京:中国建筑工业出版社.2001:P1-154.
    [123]刘保健,谢定义.随机荷载下土动力特性测试分析法[M].北京:人民交通出版社.2001:P1-159.
    [124]VINSON T S, WILSON C R, BOLANDER P. Dynamic Properties of Naturally Frozen silt[A]. Proceeding of Fourth International Conference on Permafrost [C]. Alaska, USA:Washington D.C. National Academy Press.1983:P1315-1320.
    [125]沈忠言,张家懿.围压对冻结粉土动力特性的影响[J]冰川冻.1997(03):P55-61.
    [126]BAKER T H W, JONES S J, PARAMESWARAN V R. Confined and unconfined compression tests of frozen sand [A]. Proc.4th Canada Permafrost Conf.[C], National Research Council of Canada,1982:P387--392.
    [127]JONES S J. The confined compressive strength of polycrystalline ice[J]. J. of Glaciology.1982,28(98):P171-177.
    [128]马巍,吴紫汪,盛煜.围压对冻土强度特性的影响[J].岩土工程学报.1995(05):P7-11.
    [129]梁仁旺,栗润德.黄土动力特性研究分析[J].山西建筑.2003,29(13):P22-23.
    [130]C.C.维亚洛夫.刘建坤,刘尧军,徐艳译.冻土流变学[M].北京:中国铁道出版社.2005:P38-140.
    [131]谢定义.土动力学[M].西安:西安交通大学出版社.1988:P1-299.
    [132]吴世明等.土动力学[M].北京:中国建筑工业出版社.2000:P7-61.
    [133]段云泰,史宏彦.动三轴试验中阻尼比的确定[A].全国土工计建筑物及地基抗震学术讨论会论文[C].西安.1986.
    [134]刘保健.土阻尼比实验测定及资料分析方法的简评.岩土力学与工程论文集[M].西安:陕西科学技术出版社.1994.
    [135]徐春华,徐学燕,邱明国等.循环荷载下冻土的动阻尼比试验研究[J].哈尔滨建筑大学学报,2002(06):P24-27.
    [136]马巍,吴紫汪,张长庆.冻土的强度与屈服准则[J].冰川冻土.1993.15(1):P129-133.
    [137]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社.1994.
    [138]何平.青藏铁路冻土路基变形分析研究[R].铁道部科技发展计划项目.2003.
    [139]卞晓琳,何平,施烨辉.土体冻胀与地下水关系的研究进展[J].中国农村水利水电,2007(4):24-27.
    [140]陈肖柏,王雅卿,何平.砂砾料之冻胀敏感性.岩土工程学报.1988,13(3):23-29.
    [141]陈肖柏,彭万巍,王雅卿.风丘砂垫层之冻胀试验研究[J].冰川冻土.1986,8(3):233-238.
    [142]陈肖柏.我国寒区工程冻害及其防治对策[J].地球科学进展,1990(3):46-50.
    [143]陈肖柏,王雅卿.粘性土冻胀预报新模型[J].中国科学(B辑),1991(3):296-306.
    [144]齐淑珍,张国友,陈实.关于冻胀问题的探讨[J].东北水利水电,2004,22(3):26-27.
    [145]戴惠民,王兴隆.季节冻土区公路桥涵地基土冻胀性研究[J].冰川冻土.1993,15(2):377-380.
    [146]何平,程国栋,杨成松等.冻土融沉系数的评价方法[J].冰川冻土,2003,25(6):608-613.
    [147]黑龙江省寒地建筑科学研究院.冻土地区建筑地基基础设计规范(JGJ118-98).北京:中国建 筑工业出版社,1999.
    [148]童长江,管枫年.土的冻胀与建筑物冻害防治[M].北京:水利水电出版社,1985.
    [149]杨成松,何平,程国栋等.冻融试验对土中含水量分布的影响(英文)[J].冰川冻土,2004,(S1):50-55.
    [150]董晓宏.冻融作用下黄土工程性质劣化特性研究[D].西北农林科技大学.2010.
    [151]苏谦,唐第甲,刘深.青藏斜坡黏土冻融循环物理力学性质试验[J].岩石力学与工程学报,2008,(S1):2990-2994.
    [152]李瑞平.冻融土壤水热盐运移规律及其SHAW模型模拟研究[D].内蒙古农业大学,2007.
    [153]LIU JIANKUN. Thermal regime and strain-stress state computation of growthing subgrade constructed layer by layer on permafrost[D]. Ph.D dissertation. Moscow State University of Civil Engineering.1994.
    [154]孙志忠.青藏铁路多年冻土区块石护坡路基试验研究[D].中国科学院研究生院.2006.
    [155]徐学祖,陶兆祥,傅素兰.典型融冻土的热学性质.中国科学院兰州冰川冻土沙漠研究所集刊(第2号).北京:科学出版社.1981.
    [156]刘为民,何平,张钊.土体导热系数的评价与计算[J].冰川冻土,2002,24(6):770-773.
    [157]杨诗秀,雷志栋,谢森传.均质土壤—维非饱和流动通用程序[J].土壤学报,1985,(01):24-35.
    [158]吴青柏,朱元林,刘永智等.工程活动下多年冻土热稳定性评价模型[J].冰川冻土,2002,24(2):129-133.
    [159]巫锡畴,吴邦颖.路基[M].北京:中国铁道出版社.1995.
    [160]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社.1995.
    [161]李军世,李克钏.高速铁路路基动力反应的有限元分析[J]铁道学报.1995,17(1):P66-75.
    [162]铁道部第三勘测设计院主编.铁路工程设计技术手册桥梁地基和基础[M].北京:中国铁道出版社.1991.
    [163]刘秉玺.铁路轨道[M].北京:中国铁道出版社.1985.
    [164]王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社.1997.
    [165][美]陈惠发,A.F.萨里普.余天庆等编译.弹性与塑性力学[M].北京:中国建筑工业出版社.2004.
    [166]HIBBIT,KARLSSON,SORENSEN.ABAQUS/Standard & Explicit User's Manual (Version 6.4) [M].Dassault Systemes Simulia Inc., USA,2004.
    [167]李志军,李广伟,沈照伟等.DUT-1模型冰的物理性能和弹性模量[J].自然科学进展,2000,10(10):931-935.
    [168]张辉,朱俊高,王俊杰等.击实砾质土抗拉强度试验研究[J].岩石力学与工程学报,2006(z2):4186-4190.
    [169]赵淑萍,马巍,焦贵德等.长期动荷载作用下冻结粉土的变形和强度特征[J].冰川冻土,2011,(01):144-151.
    [170]李双洋.多年冻土区铁路路基热-力稳定性数值仿真研究[D].中国科学院研究生院.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700