用于深埋圆形盾构隧道地震效应分析的2种拟静力解析解的对比研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对比分析深埋圆形盾构隧道地震效应分析常用的2种拟静力解析解,给出2种拟静力解析解法的弯矩比值、轴力比值的计算公式,研究地层弹性模量和泊松比与弯矩比值、轴力比值的关系,以及界面滑移和不滑移条件下对弯矩比值、轴力比值的影响;建立等效刚度数值模型,通过数值模拟验证这2种拟静力解析解的可靠性。结果表明:界面不滑移时,由这2种拟静力解析解获得的地震附加弯矩较为接近,但附加轴力差异较大;地层弹性模量、泊松比和界面条件对地震附加弯矩影响较小,但对地震附加轴力影响较大;由这2种拟静力解析解法与等效刚度数值解法所得的弯矩、轴力分布规律和极值位置基本一致。推荐在常规深埋圆形盾构隧道抗震设计时优先采用基于薄壁圆柱壳理论的拟静力解析方法。
Two common pseudo-static analytical solutions for analyzing the seismic effect of deep buried circular shield tunnel were comparatively studied.The calculation formulas of the moment ratio and axial force ratio between the two pseudo-static analytical solutions were given.The relationships between the moment ratio,axial force ratio and elastic modulus,Poisson ratio and the effect of the interface slip condition on the moment ratio,axial force ratio were studied.The reliability of the two pseudo-static analytical solutions was verified by building numerical analytic model of equivalent stiffness.Research shows that,with no interface slip,the two pseudo-static analytical solutions obtain basically the same additional moment caused by earthquake,but there is great difference in the additional axial force.The elastic modulus,Poisson ratio and interface conditions have little influence on additional moment but great influence on additional axial force.The distribution laws and the occurring positions of the extreme values of the bending moment and the axial force obtained by the two pseudo-static analytical solution methods and the numerical solution of equivalent stiffness are basically in accordance.The pseudo-static analysis method based on the theory of elastic thin-walled cylindrical shell should be the priority to be used in the seismic design of the deep buried circular shield tunnel.
引文
[1]王明年,崔光耀.高烈度地震区隧道设置减震层的减震原理研究[J].土木工程学报,2011,44(8):126-131.(WANG Mingnian,CUI Guangyao.Study of the Mechanism of Shock Absorption Layer in the Supporting System of Tunnels in Highly Seismic Areas[J].China Civil Engineering Journal,2011,44(8):126-131.in Chinese)
    [2]HASHASH Y M,HOOK J J,SCHMIDT B,et al.Seismic Design and Analysis of Underground Structure[J].Tunneling and Underground Space Technology,2001,16(4):247-293.
    [3]WANG J N.Seismic Design of Tunnels:A Simple State-of-the-Art Design Approach[R].New York:Monograph Parsons Brinkerhoff Quade and Douglas Inc,1993:15-25.
    [4]CILNGIR U,MADABHUSHI S P G.Effect of Depth on Seismic Response of Circular Tunnels[J].Canadian Geotechnical Journal,2010,48(1):117-127.in Chinese)
    [5]杨智勇,黄宏伟,张冬梅,等.盾构隧道抗震分析的静力推覆方法[J].岩土力学,2012,33(5):1381-1388.(YANG Zhiyong,HUANG Hongwei,ZHANG Dongmei,et al.Pushover Method for Seismic Analysis of Shield Tunnel[J].Rock and Soil Mechanics,2012,33(5):1381-1388.in Chinese)
    [6]张栋梁,杨林德,谢永利,等.盾构隧道抗震设计计算的解析解[J].岩石力学与工程学报,2008,27(3):544-549.(ZHANG Dongliang,YANG Linde,XIE Yongli,et al.Analytical Solution for Seismic Design Calculation of Shield Tunnels[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):544-549.in Chinese)
    [7]祝彦知,冯紫良,方志.地震动下考虑各向异性土体—盾构隧道数值模拟[J].岩土力学,2005,26(5):710-716.(ZHU Yanzhi,FENG Ziliang,FANG Zhi.Numerical Simulation of Shield Tunnel Dynamic Response to Earth Motions Taking Account of Anisotropy of Layered Soil[J].Rock and Soil Mechanics,2005,26(5):710-716.in Chinese).
    [8]刘晶波,王文晖,赵冬冬,等.地下结构抗震分析的整体式反应位移法[J].岩石力学与工程学报,2013,32(8):1618-1624.(LIU Jingbo,WANG Wenhui,ZHAO Dongdong,et al.Integral Response Deformation Method for Seismic Analysis of Underground Structure[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(8):1618-1624.in Chinese)
    [9]JOSEPH Penzien.Seismically Induced Racking of Tunnel Linings[J].Earthquake Engineering and Structural Dynamics,2000,29:683-691.
    [10]HASHASH Yma,PARK D,YAO JI-C.Ovaling Deformations of Circular Tunnels under Seismic Loading,an Update on Seismic Design and Analysis of Underground Structures[J].Tunnelling and Underground Space Technology,2006,20:435-441.
    [11]KYUNG-HO Park,KULLACHAI Tantayopin,et al.Analytical Solution for Seismic-Induced Ovaling of Circular Tunnel Lining under No-Slip Interface Conditions:a Revisit[J].Tunnelling and Underground Space Technology,2009(24):231-235.
    [12]GEORGE P Kouretzisn,SCOTT W Sloan,JOHN P Carter.Effect of Interface Friction on Tunnel Liner Internal Forces Due to Seismic S-and P-Wave Propagation[J].Soil Dynamics and Earthquake Engineering,2013,46:41-51.
    [13]晏启祥,马婷婷,何川,等.盾构隧道抗震分析近似解析解及其应用[J].西南交通大学学报,2010,45(3):341-345.(YAN Qixiang,MA Tingting,HE Chuan,et al.Approximate Analytical Solution of Aseismic Analysis of Shield Tunnel and Its Application[J].Journal of Southwest Jiaotong University,2010,45(3):341-345.in Chinese)
    [14]BOBET A.Drained and Undrained Response of Deep Tunnels Subjected to Far-Field Shear Loading[J].Tunnelling and Underground Space Technology,2010,25(1):21-31.
    [15]PENZIEN J,WU C L.Stresses in Linings of Bored Tunnels[J].Earthquake Engineering and Structural Dynamics,1998,27:283-300.
    [16]陈贵红.沉管隧道地震响应的影响因素分析[J].中国铁道科学,2005,26(6):93-97.(CHEN Guihong.Analysis of the Affecting Factors for Seismic Response of Immersed Tunnel[J].China Railway Science,2005,26(6):93-97.in Chinese)
    [17]赵伯明,苏彦.盾构隧道的纵向地震响应[J].中国铁道科学,2009,30(5):59-64.(ZHAO Boming,SU Yan.The Longitudinal Seismic Response of Shield Tunnel[J].China Railway Science,2009,30(5):59-64.in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心