钢管混凝土桥墩地震响应有限元分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于柔度法有限元分析了钢管混凝土桥墩的地震响应规律,探讨了轴压比、长细比、含钢率、混凝土强度等参数对地震力、墩顶位移、墩顶加速度等的影响.结果显示:①随着轴压比、钢管厚度和混凝土强度的增加墩底地震力增加,随着桥墩高度的增加地震力降低;②随着轴压比、桥墩高度的增加,墩顶地震位移增大,随着钢管厚度和混凝土强度的增加地震位移降低;③随着轴压比的增加,墩顶地震加速度减小,随着桥墩高度的增加,墩顶加速度先减小后略增加,随着钢管厚度和混凝土强度的增加,墩顶地震加速度增加.相关成果可为钢管混凝土桥墩抗震设计和施工提供借鉴和指导.
Based on finite element analysis of the flexibility method,seismic response of concrete filled steel tube pier was discussed.The influence of axial compression ratio,slenderness ratio,steel ratio and concrete strength on the seismic force,the pier top displacement,the pier top acceleration etc.was studied in detail.The results showed uiat:① With the increase of the axial pressure ratio,thickness of steel tube and concrete strength,the seismic force at pier bottom increased.With the increase of pier height,the seismic force reduced.② With the increase of axial compression ratio and pier height,the seismic displacement at pier top increased.With the increase of the thickness of steel tube and concrete strength,seismic displacement reduced.③ With the increase of axial compression ratio,seismic acceleration at the pier top decreased.With the increase of pier height,seismic acceleration at the pier top decreased at first and then increased slightly.With the increase of thickness of steel tube and concrete strength,the pier top seismic acceleration increased.The related results can provide references for the seismic design and construction of concrete filled steel tubular piers.
引文
[1]臧博.钢管混凝土桥墩抗震性能分析[D].重庆:重庆交通大学.2010.ZANG B.The analysis of seismic performance of concrete-filled steel tubular pier[D].Chongqing:Chongqing Jiaotong University,2010.
    [2]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.CAI S H.Modern steel tube confined concrete structures[M].Beijing:China Communications Press,2003.
    [3]MICHEL B,JULIA M.Seismic design of concrete-filled circular steel bridge piers[J].J Bridg Engin,ASCE,2004,9(1):24-34.
    [4]KITADA T,MATSUMURA M,OTOGURO Y.Seimic retrofitting techniques using an energy absorption segment for steel bridge piers[J].Engin Struct,2003(25):621-635.
    [5]ICHINOHE Y,MATSUTANl T,NAKAJIMA M,et al.Elasto-plastic behavior of concrete filled steel circular columns[C]//Proceeding of the Third International Conference on Steel-Concrete Composite Structure,1991,131-136.
    [6]臧华,刘钊,李红英,等.钢管混凝土桥墩抗震性能试验研究[J].防灾减灾工程学报,2010,30(4):442-446.ZANG H,LIU Z,LI H Y,et al.Experimental study on seismic performance of concrete-filled steel bridge piers[J].J Disast Prevent Mitig Engin,2010,30(4):442-446.
    [7]庞彪.圆钢管混凝土桥墩抗震性能试验研究[D].重庆:重庆交通大学,2012.PANG B.Experimental study on seismic performance of circular concrete-filled steel bridge columns[D].Chongqing:Chongqing Jiaotong University,2012.
    [8]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):2-11.LU X L,LU W D.Seismic behavior of conrete-filled rectangular steel tubular columns under cyclic loading[J].J Build Struct,2000,21(2):2-11.
    [9]常山,朱东生,何发礼.框架式钢管混凝土桥墩非线性地震反应分析[J].重庆交通大学学报:自然科学版,2013,32(3):389-395.CHANG S,ZHU D S,HE F L.Nonlinear seismic response analysis on concrete-filled steel tubular frame piers[J].J Chongqing Jiaotong Univ:Nat Sci,2013,32(3):389-395.
    [10]过镇海,时旭东.钢筋混凝土原理和分析[M].北京I清华大学出版社,2003.GUO Z H,SHI X D.Reinforced concrete theory and analysis[M].Beijing:Tsinghua University Press,2003.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心