长联多跨连续梁桥非线性地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
连续梁桥以其结构刚度大、变形小、整体性能好等优点,在我国的城市和公路桥梁中分布极为广泛.橡胶支座隔震技术作为一种成熟的结构被动控制技术,已广泛应用于连续梁桥抗震设计中.长联多跨连续梁桥由于其跨数多、单联长度长,地震响应较一般连续梁桥明显,且其所需支座数量众多,选取抗震性能好且价格适中的橡胶支座是该桥型设计的重要工作之一.以漳河特大桥第二联为工程背景,采用普通板式橡胶支座代替原设计的HDR系列高阻尼隔震橡胶支座,利用有限元软件Midas/Civil开展了桥梁非线性地震时程分析.结果表明,桥梁墩高的变化会引起全桥刚度分布不均衡,造成地震惯性力在纵桥向分配不均,桥墩越矮所受地震惯性力越大;桥梁刚度对横桥向地震惯性力的分配影响不大;采用普通板式橡胶支座的长联多跨连续梁桥抗震性能可以满足规范要求.
Continuous-beam bridges have been widely used in urban bridges and highway bridges with many advantages,such as large stiffness,small deformation and good integrated performance.As a mature structure passive control technology,the rubber bearing seismic isolation technology is applied generally in the seismic design of continuous-beam bridge.Because a number of spans and long length for each span,the seismic response of long multi-span continuous-beam bridges is more obvious than the general continuous-beam bridges,and more bearings should be applied.So it is important to select suitable rubber bearings with good seismic performance and moderate price for this kind of bridges during the design work.An FE model of a real long multi-span continuous-beam bridge,Zhanghe bridge,is established using the finite element software Midas/Civil,and uses the ordinary laminated rubber bearings to take the place of the HDR series high damping rubber bearings,the nonlinear seismic respense analysis is carried out.The results show that the change of the height of pier causes uneven distribution of the stiffness of the whole bridge,and makes uneven distribution of earthquake inertia force in the longitudinal direction of the bridge.The stiffness of the bridge has little effect to the distribution of earthquake inertia force in the horizoneal direction of the bridge.The seismic performance of the bridge with ordinary laminated rubber bearings can meet the code’s requirements.
引文
[1]叶爱君,管仲国,范立础.桥梁抗震[M].2版.北京:人民交通出版社,2011.
    [2]徐岳,邹存俊,张丽芳,等.连续梁桥[M].北京:人民交通出版社,2012.
    [3]吴勇,马坤全,吴定俊,等.采用减隔震装置后轨道交通高架桥的抗震性能分析[J].城市轨道交通研究,2005(1):61-63,89.
    [4]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [5]庄军生.桥梁减震、隔震支座和装置[M].北京:中国铁道出版社,2012.
    [6]JT/T 663-2006公路桥梁板式橡胶支座规格系列[S].
    [7]JT/T 4-2004公路桥梁板式橡胶支座[S].
    [8]陈铁军.连续梁桥抗震分析设计方法[J].中国西部科技,2011,10(14):25-27.
    [9]苗林,陈兴冲,夏修身,等.西小坪预应力连续箱梁桥抗震分析[J].兰州交通大学学报:自然科学版,2007,26(1):52-55.
    [10]陈维东.土力学与地基基础[M].北京:机械工业出版社,2004.
    [11]吴庆雄,陈宝春,高桥和雄.新西海桥的非线性地震响应分析[J].地震工程与工程振动,2008,28(5):55-64.
    [12]Ren W X,Obata M.Elastic-plastic seismic behavior of long span cable-stayed bridges[J].Journal of Bridge Engineering,ASCE,1999,4(3):194-203.
    [13]JTG/T B02-01-2008公路桥梁抗震设计细则[S].

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心