近断层地震动作用下桥梁结构的组合隔震分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为改善近断层地震动作用下隔震桥梁结构的抗震性能,基于Benchmark结构振动控制问题,研究附加黏滞阻尼器、磁流变(MR)阻尼器的组合隔震策略。非线性动力分析过程中,优化了黏滞阻尼器的阻尼系数和速度指数,并设计了分散模糊控制器来确定施加给磁流变阻尼器的电压。研究结果表明:采用黏滞阻尼器和磁流变阻尼器可提高隔震桥梁结构在近断层地震动作用下的安全性,结构绝大多数响应,尤其是隔震支座的变形得到明显减小;与采用黏滞阻尼器进行组合隔震相比,采用磁流变阻尼器的智能模糊控制方案出力相对较小、控制效果更好,同时,即使在外部电源供给中断的情况下,磁流变阻尼器仍然能发挥一定的作用,具有失效-安全的优点。
To improve the seismic performance of isolated bridge subjected to near-fault earthquakes,benchmark structural vibration control for a seismically excited highway bridge is used as a numerical example to demonstrate the effectiveness of the hybrid isolation system with viscous damper and magnetorheological(MR) damper.In the process of nonlinear dynamic analysis,the damping coefficient and velocity index of viscous damper are optimized,and the decentralized fuzzy logic control method is employed to determine the voltage value applied to the MR damper.Results show that the hybrid isolation system based on the two kinds of damper can significantly improve the bridge's safety under near-fault earthquake and the dynamic responses,especially the isolation bearing deformation are greatly reduced.In comparison with the passive viscous damper control,MR damper based on intelligent fuzzy logic control system has the advantage in requiring less control force and obtaining better control performance,furthermore,even without providing voltage,MR damper is also capable of mitigating the responses.
引文
[1]Chopra A K,Chintanapakdee C.Comparing response of SDF systems to near-fault and far-fault Earthquake Motions in the context of spectral regions[J].Earthquake Engineering&Structural Dynamics2,001,30(12):1769-1789.
    [2]Hall J,Heaton T,Halling M,et al.Near-source ground motion and its effect on flexible buildings[J].Earthquake Spectra1,995,11(4):569-605.
    [3]魏红一,逯宗典,王志强.近场简支梁铅芯橡胶支座隔震特性分析[J].同济大学学报:自然科学版,2010,38(1):39-44.
    [4]江辉,朱晞.近断层强震速度脉冲效应及连续梁桥减隔震特性分析[J].中国安全科学学报,2003,13(25):57-62.
    [5]廖文义,罗俊雄,万绚.隔震桥梁承受近断层地震之反应分析[J].地震工程与工程振动,2001,21(4):102-108.
    [6]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析[J].地震工程与工程振动,2005,25(2):119-124.
    [7]Agrawal A K,Yang J N.A semi-active hybrid isolation system for buildings subject to Near-field earthquakes[J].Advanced Technology in Struc-tural Engineering,ASCE,Processings of Structures Congress Philadelphia,PA,20001,29(7):884-894.
    [8]Makris N,Shih-Po Chang.Effect of viscous,viscoplastic and friction damping on the response of seismic isolated structures[J].Earthquake Engi-neering and Structural Dynamics,20002,9(1):85-107.
    [9]Sahasrabudhe S,Nagarajaiah S,Hard C.Experimental study of sliding isolated buildings with smart dampers subjected to near source ground motions[C].14th Engineering Mechanics Conf.,May 21-24,2000,Austin,Texas:283-297.
    [10]Agrawal A K,Tan P,Nagarajaiah S,et al.Benchmark structural control problem for a seismically excited highway bridge-Part I:Phase I Problemdefinition[J].Journal of Structural Control and Health Monitoring2,009,16(5):509-529.
    [11]Tan P,Agrawal A K.Benchmark structural control problem for a seismically excited highway bridge-Part II:Phase I Sample control design[J].Journal of Structural Control and Health Monitoring.2009,16(5):530-548.
    [12]Nagarajaiah S,Narasimhan S,Agrawal A Ke,t al.Benchmark structural control problem for a seismically excited highway bridge-Part III:Phase IISample controller for the fully base-Isolated case[J].Journal of Structural Control and Health Monitoring2,009,16(5):549-563.
    [13]Dyke S J,Spencer B F,Sain M K,et al.Modeling and control of magnetorheological dampers for seismic response reduction[J].Smart Materialand Structures,1996,5(5):565-575.
    [14]Yi F,Dyke S J,Caicedo J M,et al.Experimental verification of multi-input seismic control strategies for smart dampers[J].Journal of Engineer-ing Mechanics,2001,27(11):1152-1164.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心