中央扣对大跨悬索桥动力特性和地震响应的影响研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了探讨大跨悬索桥在动力激励下中央扣的作用,以四渡河悬索桥为研究对象,建立该大跨钢桁架加劲梁悬索桥的3种中央扣模式的空间动力计算模型,对其动力特性和在地震激励下的时程反应进行空间非线性分析。研究结果表明,中央扣提高了结构的反对称抗扭刚度和限制了结构的纵飘特性,同时加强加劲梁-主缆-主塔的动力耦合作用;1对柔性中央扣的设置方式对加劲梁的纵桥向位移和应力响应的影响均不利,因而是不可取的;而刚性中央扣和3对柔性中央扣的设置方式对限制加劲梁纵桥向振幅有较显著作用,但是由此导致结构地震应力响应大幅增加,因而从抗震设计角度设置中央扣是"有得有失"的。
In order to investigate the function of central buckles of the long-span suspension bridge under dynamic loads excitation,taking the Sidu River Bridge,a suspension bridge with steel truss stiffening girders,as an example,the spatial dynamic finite element models for the Bridge with three types of central buckles were established with ANSYS software.Self-vibration behavior analysis and 3-D nonlinear time history analysis for the Bridge under seismic excitation were carried out.Analytical results show as follows: The central buckle raises the antisymmetrical torsion stiffness and restricts the longitudinal floating characteristic of the suspension bridge,and enhances dynamic coupling effect of the girder-cable-tower;a pair of flexible central buckles is not advisable to be adopted for seismic design of the suspension bridge because it has adverse effect on longitudinal displacement and stress response of the stiffening girder;the rigid central buckle and three pairs of flexible central buckles have significant effect on restricting the longitudinal vibration amplitude of the stiffening girder,however,thus making seismic stress responses of the structure increase greatly.Therefore the use of the central buckle has "merits and demerits" from the angle of seismic design of the suspension bridge.
引文
[1]Gimsing N J.Cable Supported Bridges[M].2th ed.Eng-land:John Wiley&Sons,1997.
    [2]Viola J M,Syed S,Clenance J.The New Tacoma NarrowsSuspension Bridge:Construction Support and Engineering[C]//Proceedings of the 2005 Structures Congress and the2005 Forensic Engineering Symposium.New York:Struc-ture Engineering Institute of the America society of CivilEngineers,2005:1-12.
    [3]严国敏.现代悬索桥[M].北京:人民交通出版社,2004.
    [4]Vincenzo S,Piero D A.Influence of Low-frequency WindSpeed Fluctuations on the Aeroelastic Stability of Suspen-sion Bridges[J].Journal of Wind Engineering and Industri-al Aerodynamics,2003,91(10):1285-1297.
    [5]单宏伟,韩大章,吕立人.润扬长江公路大桥悬索桥中央扣设计[J].公路,2004,(8):58-61.SHAN Hong-wei,HAN Da-zhang,LU Li-ren.Design ofCenter Nodes of Runyang Suspension Bridge over YangtzeRiver[J].Highway,2004,(8):58-61.
    [6]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003.
    [7]Xu Y L,Ko J M,Zhang W S.Vibration Studies of TsingMa Suspension Bridge[J].Journal of Bridge Engineering,1997,2(4):149-156.
    [8]Clough R W,Penzien J.Dynamics of Structures[M].NewYork:McGraw-Hill Inc,1993.
    [9]Kiureghian A D,Neuenhofer A.Response Spectrum Meth-od for Multi-Support Seismic Excitations[J].EarthquakeEngineering and Structural Dynamics,1992,21(8):713-740.
    [10]Leger P,Ide I M,Paultre P.Multiple-Support SeismicAnalysis of Large Structures[J].Computers&Struc-tures,1990,36(6):1153-1158.
    [11]聂利英,叶爱君,胡世德.大跨度悬索桥地震动力分析中高阶振动的影响[J].同济大学学报,2001,29(1):84-88.NIE Li-ying,YE Ai-jun,HU Shi-de.Effects of HigherModes of Vibration on Seismic Response of SuspensionBridges[J].Journal of Tongji University,2001,29(1):84-88.
    [12]秦权,罗颖,孙浩.悬索桥上部结构的抗震设计[J].清华大学学报(自然科学版),1998,38(12):52-56.QIN Quan,LUO Ying,SUN Hao.Seismic Design ofSuspension Bridge Superstructures[J].Journal of Tsing-hua University(Natural Science),1998,38(12):52-56.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心