隧道洞口部边坡动力响应特性振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
我国西南地区建有大量的公路、铁路隧道工程,地震条件下隧道洞口部边坡的动力响应特性不仅控制边坡的变形破坏机制,而且也是隧道洞口部边坡动力支护设计的依据。采用大型振动台模型试验,对隧道洞口部边坡加速度及位移动力响应特性进行研究,并对比分析不同地震波波形的输入对边坡动力特性的影响。结果表明:与一般公路及建筑边坡不同,隧道洞口部边坡坡面的响应加速度具有先增大再减小再增大的特性;边坡动力支护设计采用单一峰值是偏于危险的,应综合考虑多种波形的影响。位移监测结果表明:地震波较小时边坡坡顶变形比较明显,但随着地震波幅值的增加,隧道洞口部边坡坡脚的变形急剧增加且超过了坡顶变形,因此应增强边坡坡脚的支护强度。
In south- west regions of China a lot of highway and railway tunnel projects are constructed,the dynamic response characteristics of side slopes at tunnel portals under the seismic conditions not only control failure mechanisms of side slopes,but also are bases for design of dynamic supports of side slopes at tunnel portals. This paper adopts large- scale vibrating table model test to study dynamic response characteristics of acceleration and displacement of side slopes at tunnel portals and comparatively analyzes influences of input of different seismic waveforms on dynamic characteristics of side slopes. The results show that the acceleration exhibits the characteristic of increase- decrease- increase on surface of side slopes at tunnel portals,which is different from side slopes of general highways and buildings; single peak value adopts in design of dynamic supports of side slopes is at risk,and influences of multiple waveforms should be comprehensively considered. The displacement monitoring results show that the top deformation of side slopes is obvious when seismic waveforms are small,but the deformation of at the foot of side slopes at tunnel portals sharply increases with increase of the amplitude of seismic waveforms and exceeds the top deformation,therefore,the supporting strength for the foot of side slopes should be enhanced.
引文
[1]Dowding C H,Rozen A.Damage to Rock tunnels from Earthquake Shaking[J].Journal of the Geotechnical Engineering Division,1978(104):175-191.
    [2]W L Wang,T T Wang,J J Su,et al.Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J].Tunnelling and Underground Space Technology,2001(16):133-150.
    [3]王文礼,苏灼谨,林峻弘,等.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [4]WANG Zheng Zheng,GAO Bo,JIANG Yuan Jun,et al.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China Series E:Technological Sciences,2009(52):546-558.
    [5]张庆飞.黄土地区隧道洞口段边坡稳定性研究[D].成都:西南交通大学,2005.
    [6]陈建平.高边坡岩堆地区隧道洞口段围岩稳定性分析[D].成都:西南交通大学,2008.
    [7]王林.拱形明洞在短隧道群中洞口高边坡的安全应用[J].铁道建筑技术,2011(9):122-125.
    [8]Kutter B L.Centrifugal modeling of the response of clay embankments to earthquakes[D].London:Cambridge University,1982.
    [9]Wartman J.Physical model studies of seismically induced deformations in slopes[D].California of USA:University of California,1999.
    [10]Sergio A Sepu’lveda,William Murphy,Randall W Jibson,et al.Seismically induced rock slope failures resulting from topographic amplification of strong ground motions:The case of Pacoima Canyon,California[J].Engineering Geology,2005(80):336-348.
    [11]C A Stamatopoulosa,M Bassanoua,A J Brennanb.Mitigation of the seismic motion near the edge of clifftype topographies[J].Soil Dynamics and Earthquake Engineering,2007(27):1082-1100.
    [12]Meei-Ling Lin,Kuo-Lung Wang.Seismic slope behavior in a large-scale shaking table model test[J].Engineering Geology,2006(86):118-133.
    [13]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [14]杨国香,伍法权,董金玉,等.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报,2012,31(4):696-702.
    [15]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心