路堤震害模式及路堤动力特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究强震区路堤的震害模式及动力特性,对汶川地震近场区路堤震害进行了调查,发现路堤震害以边坡上部拉裂、下部鼓张变形破坏模式为主,路堤震害严重程度与地震烈度、护坡措施和路堤本体加固措施关系密切,与路堤高度和地面横坡坡度关系不明显。利用振动台模型试验及数值模拟发现:加速度和动剪应力在路堤中上部增量最大、数值最大,且其最大值所在部位与拉裂缝出现部位基本一致;动土压力和位移在护坡道上方达到最大值,最大值部位与鼓张裂缝出现部位基本一致;张拉裂缝、鼓张裂缝均出现在距坡面3m深度范围内,表明路堤损害是一种浅表层震害模式。通过动力数值计算,发现不同高度的路堤地面峰值加速度(PGA)放大系数形态呈现3种类型:沿程单调递增形态(h<10m)、随高程增加而增加→衰减→增加的"三段形态"(h>20m)以及介于前二者之间的过渡形态(10mTo study the seismic damage mode and dynamic characteristics of road embankment,firstly,the road embankment seismic damage of Wenchuan Earthquake is investigated finding out that the main seismic damage type of road embankment is rip of upside and bulge of downside of the slope. Road embankment seismic damage is associated with seismic intensity,revetment measures,and reinforcement measures of road embankment noumenon closely,and has no significant relation with embankment height and crossfall of the ground. By means of shaking table model test and numerical simulation,it is found out that the magnitude and the increment of acceleration and dynamic shear stress are the largest in the upside of the road embankment,which is in the same position of the rip. Also,dynamic earth pressure and displacement are the largest above the berm,which is in the same position of bulge. All of rip and bulge are in the depth of 3 m,which show that the road embankment damage is a superficial zone damage. By dynamic numerical analysis finding out that magnification factor of peak ground acceleration (PGA) shows three types:monotone increasing as the height increases (h <10 m),increasing to decreasing and later increasing again as the height increases (h >20 m),and the form lies between the formers (10 m
引文
[1]汪闻韶,金崇磐,王克成.土石坝的抗震计算和模型实验及原型观测[J].水利学报,1987,(12):1-16.WANG Wen-shao,JIN Chong-pan,WANG Ke-cheng.Earthquake resistance computation and model test of earth-rock dam and its prototype observation[J].Journal of Hydraulic Engineering,1987,(12):1-16.
    [2]LIN M L,WANG K L.Seismic slope behavior in a large-scale shaking table model test[J].Engineering Geology,2006,86(2,3):118-133.
    [3]PRASAD S K,TOWHATA I.Shaking table tests in earthquake geotechnical engineering[J].Current Science,2004,87(10):1398-1404.
    [4]WEGNER J L.Dynamic wave-soil-structure interaction analysis in the time domain[J].Computers and Structures,2005,83:2206-2214.
    [5]MEYMAND P J.Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay[D].Berkeley:University of California,1998.
    [6]徐光兴,姚令侃,高召宁.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,28(3):624-632.XU Guang-xing,YAO Ling-kan,GAO Zhao-ning.Large-scale shaking table model tests on dynamic characteristics and dynamic responses of slope[J].Chinese Journal of Rock Mechanics and Engineering,2008,28(3):624-632.
    [7]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报,2008,30(6):918-923.XU Guang-xing,YAO Ling-kan.Study on the dynamic responses of slope under earthquake and the influence of ground motion parameters on the responses[J].ChineseJournal of Geotechnical Engineering,2008,30(6):918-923.
    [8]刘小生,王钟宁,赵剑明,等.面板堆石坝振动模型试验及动力分析研究[J].水利学报,2002,(2):29-35.LIU Xiao-sheng,WANG Zhong-ning,ZHAO Jian-ming,et al.Advancement of technology on shaking table model test and dynamic analysis of CFRD[J].Journal of Hydraulic Engineering,2002,(2):29-35.
    [9]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-10,22.LING Xian-zhang,GUO Ming-zhu,WANG Dong-sheng,et al.Large-scale shaking table model test of seismic response of bridge of pile foundation in ground of liquefaction[J].Rock and Soil Mechanics,2006,27(1):7-10,22.
    [10]陈国兴,庄海洋,杜修力,等.土–地铁隧道动力相互作用的大型振动台试验——试验结果分析[J].地震工程与工程振动,2007,27(1):164-170.CHEN Guo-xing,ZHUANG Hai-yang,DU Xiu-li,et al.A large-scale shaking table test for dynamic soil-metro tunnel interaction:Analysis of test results[J].Journal of Earthquake Engineering and Engineering Vibration,2007,27(1):164-170.
    [11]武思宇,宋二祥,刘华北,等.刚性桩复合地基的振动台试验研究[J].岩土工程学报,2005,27(11):1334-1337.WU Si-yu,SONG Er-xiang,LIU Hua-bei,et al.Shaking table test of composite foundation with rigid pile[J].Chinese Journal of Geotechnical Engineering,2005,27(11):1334-1337.
    [12]BOUCKOVALAS G D,PAPADIMITRIOU1A G.Numerical evaluation of slope topography effects on seismic ground motion[J].Soil Dynamics and Earthquake Engineering,2005,25(7–10):547-558.
    [13]许红涛,卢文波,周创兵,等.基于时程分析的岩质高边坡开挖爆破动力稳定性计算方法[J].岩石力学与工程学报,2006,25(11):2213-2219.XU Hong-tao,LU Wen-bo,ZHOU Chuang-bing,et al.Time history analysis method for evaluating dynamic stability of high rock slope under excavation blasting[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(11):2213-2219.
    [14]祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报,2006,49(2):518-523.QI Sheng-wen.Two patterns of dynamic responses of single-free-surface slopes and their threshold height[J].Chinese Journal of Geophysics,2006,49(2):518-523.
    [15]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120.BO Jing-shan,XU Guo-dong,JING Li-ping.Seismic response and dynamic stability analysis of soil slopes[J].Earthquake Engineering and Engineering Vibration,2001,21(2):116-120.
    [16]刘汉龙,费康,高玉峰.边坡地震稳定时程分析方法[J].岩土力学,2003,24(4):553-556.LIU Han-long,FEI Kang,GAO Yu-feng.Time history analysis method of slope seismic stability[J].Rock and Soil Mechanics,2003,24(4):553-556.
    [17]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定分析[J].岩石力学与工程学报,2004,23(8):1318-1324.TANG Hong-xiang,SHAO long-tan.Finite element analysis on slope stability of earth-rock dam under earthquake[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(8):1318-1324.
    [18]铁道第一勘察设计院.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [19]交通部公路规划设计院.JTJ004-89公路工程抗震设计规范[S].北京:人民交通出版社,1999.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心