空间缆索自锚式悬索桥动力特性及刚度影响规律
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
空间缆索自锚式悬索桥的主缆直接锚固在加劲梁上,同时由于主缆的空间特性,与地锚式悬索桥及传统平面索相比,其动力性能存在很大的差异。针对青岛海湾大桥大沽河航道桥建立非线性空间有限元模型,对其动力特性及结构刚度影响规律进行了分析。结果表明,该桥振型基本合理,具有密布的频谱;作为自锚式悬索桥其整体刚度较低,固有周期较长;单柱式桥塔的横向刚度较弱,横向振动出现较早;另外,由于缆索横向间距较小,刚度较小,前10阶振型中有5阶索振。各振型受结构刚度的影响不同,主缆刚度主要影响悬索桥的1阶竖弯及扭转,加劲梁竖向刚度对加劲梁1阶竖弯及加劲梁扭转振型影响较大,横向刚度主要影响悬索桥的加劲梁横向振型,扭转刚度主要影响悬索桥的1阶扭转振型;主塔纵向刚度主要影响悬索桥的纵飘振型;横向刚度主要影响索塔的1阶横向振型。
The spatial main cables of self-anchored suspension bridges are directly anchored in the stiffening girder,which results in obvious differences in dynamic performance between self-anchored and earth-anchored suspension bridges or plane cable suspension bridges.A spatial nonlinear finite element model on Dagu River Channel Bridge of Qindao Bay Bridge is established to analyze the dynamic perfor-mance and variations of structural stiffness are considered to study their influence on the dynamic perfor-mance of the bridge.The results show that the mode of the bridge is rational and the frequency spectrums are dense.The natural period of the self-anchored suspension bridge is longer due to its lower integral stiffness.The transverse vibration of the single-pole tower appears earlier due to its weak lateral stiffness.In addition,there are five cable vibrations among the first ten modes,mainly due to the low horizontal stiffness of the near spatial cables.Different modes of vibration are influenced by different structure stiffness.The main cable stiffness mainly affects on the mode of the first-order vertical bending and torsion of the suspension bridge.The vertical stiffness of the stiffening girder affects on the first order vertical bending mode and stiffening torsional mode.The lateral stiffness of the stiffening girder mainly affects on the lateral vibration mode.The torsional stiffness mainly affects on the first-order torsional mode of the suspension bridge.The longitudinal stiffness of the main tower mainly affects on the longitudinal floating mode of the bridge.The lateral stiffness of the main tower affects on the first-order transverse mode.
引文
[1]F M Bleich,C B McCullough,R Rosecrans.The mathe-matical theory of vibration in suspension bridges[J].Bureau of Public Roads,1950.
    [2]A M Abded-Ghaffar.Suspension bridge vibration:con-tinum formulation[J].ASCE,1982.
    [3]S G Arzoumenidis,M P Bieniek.Finite element analy-sis of suspension bridges[J].Computer&Structure,1985,21(6).
    [4]Ochsendorf J A,Billington D P.Self-anchored suspen-sion bridge[J].Engineering Structures,2002,24:1547-1559.
    [5]张启伟,冯敏祎.自锚式混凝土悬索桥的动力分析[J].同济大学学报:自然科学版,2004,32(12):1562-1566.
    [6]张宏斌,孔宪京,张哲.自锚式悬索桥动力特性分析[J].公路交通科技,2004,21(7):66-69.
    [7]马坤全,潘湘文,沈钱斌.空间缆索自锚式悬索桥模态贡献系数分析[J].桥梁建设,2009,(1):11-14.
    [8]邓志荣,李传习.江西九江长江公路斜拉桥动力特性分析[J].公路与汽运,2010,(3):118-121.
    [9]赵卓,张哲,刘旭东.自锚式悬索桥主桥动力特性分析[J].世界地震工程,2006,22(3):84-88.
    [10]增广武,汪本媛,韩振勇.悬索桥主缆初张力对成桥结构性能的影响[J].中国铁道科学,2007,28(1):28-32.
    [11]王亚洲,段文娟,李贵洁.结构参数变化对自锚式悬索桥动力特性的影响[J].山西科技,2006,(6):95-96.
    [12]丰硕,项贻强,谢旭,等.自锚式悬索桥动力特性及结构参数影响规律研究[J].世界桥梁,2004,(4):50-53.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心