基于地面LIDAR玉树地震地表破裂的三维建模分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2010年4月14日的玉树MS7.1地震造成沿甘孜-玉树断裂的一系列NW向地表破裂。利用Trimble GX 3D地面激光三维扫描仪获取了玉树地震断裂SE段禅古寺附近的典型地震地表破裂的精细点云数据。在对点云数据进行校正、分割、滤波等预处理基础上,分析了地震地表破裂不同表面建模方式的原理和方法,选取了无投影的不规则三角网建模方式对该处地表破裂进行三维建模实验,结合精配准高清晰现场纹理照片,制作了地震地表破裂的三维图像;并从模型的多个角度选取剖面进行地震地表破裂精细三维量测分析,得到该处地表破裂的平均垂直位移为74cm,水平位移为10cm。在此基础上进一步分析了玉树地震断裂的性质及其破裂特点。
Yushu MS 7.1 earthquake,occurring on April 14,2010,has caused a series of co-seismic surface ruptures.The surface deformation and ruptures caused by earthquake can easily be changed due to natural environment changes and from human activities.Moreover,the complex topography and severe natural environment in the Tibet Plateau make it difficult to acquire original features of surface rupture wholly via traditional surveying methods.However,as a new type of remote sensing technique,due to its characteristics of non-touching,high-resolution,rapid acquisition,terrestrial LIDAR technique can obtain the 3D information of surface rupture quickly and effectively,and provide the comprehensive scientific data for the further quantitative analysis.This paper introduces the characteristic of terrestrial laser scanner-Trimble GX 3D,and based on which the finite point clouds of the typical co-seismic surface rupture located on the southeast segment of Ganzi-Yushu Fault zone near Changu Temple were acquired.Based on the point cloud data prepossessing of registration,segmentation,smoothing and so on,the different principles and methods for surface modelling of co-seismic surface rupture were analysed,and the modelling experiment was conducted on surface rupture.After that,combining with the high resolution texture photos obtained on site,which had been precisely matched with point cloud data,the surface rupture 3D model was created based on the non projection mode.Also,the profiles from different perspectives were chosen to measure and analyse the displacement of the rupture exactly in the 3D view.The result shows that the average vertical displacement is about 74cm and the average left-lateral strike-slip displacement is about 10cm.Finally,the characteristics of Ganzi-Yushu Fault and characteristic of its rupture were analyzed and discussed.
引文
郭华东,张兵,雷莉萍,等.2010.玉树地震高倒塌率建筑物及诱因:遥感认识[J].中国科学(D辑),40(5):538—540.GUO Hua-dong,ZHANG Bing,LEI Li-ping,et al.2010.Spatial distribution and inducement of collapsed buildings inYushu earthquake based on remote sensing analysis[J].Science in China(Ser D),40(5):538—540(in Chinese).
    孙鑫喆,徐锡伟,陈立春,等.2010.青海玉树MS7.1地震2个典型地点的地表破裂特征[J].地震地质,32(2):338—344.doi:10.3969/i.issn.0253-4967.2010.02.001SUN Xin-zhe,XU Xi-wei,CHEN Li-chun,et al.2010.Characteristics of surface rupture of the MS7.1Yushu,Qinghai Province earthquake at two representative places[J].Seismology and Geology,32(2):338—344(in Chinese).
    谭仁春,杜清运,杨品福,等.2006.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报(信息科学版),31(5):436—439.TAN Ren-chun,DU Qing-yun,YANG Pin-fu,et al.2006.Optimized triangulation arithmetic in modeling terrain[J].Geomatics and Information Science of Wuhan University,31(5):436—439(in Chinese).
    张军龙,陈长云,胡朝忠,等.2010.玉树MS7.1地震地表破裂带及其同震位移分布[J].地震,30(3):1—12.ZHANG Jun-long,CHEN Chang-yun,HU Chao-zhong,et al.2010.Surface rupture and coseismic displacement of theYushu MS7.1earthquake,China[J].Earthquake,30(3):1—12(in Chinese).
    Abelln A,Vilaplana J M,Martínez J.2006.Application of a long-range terrestrial laser scanner to a detailed rockfallstudy at Vall de Núria(Eastern Pyrenees,Spain)[J].Engineering Geology,88(3/4):136—148.
    Baran R,Guest B,Friedrich A M.2010.High-resolution spatial rupture pattern of a multiphase flower structure,RexHills,Nevada:New insights on scarp evolution in complex topography based on3-D laser scanning[J].GeologicalSociety of America Bulletin,122(5/6):897—914.
    Beraldin J A,Blais F,Boulanger P,et al.2000.Real world modelling through high resolution digital3D imaging of objects and structures[J].ISPRS Journal of Photogrammetry and Remote Sensing,55(4):230—250.
    Bitelli G,Dubbini M,Zanutta A.2004.Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies[A].Proceedings of the XXth ISPRS Congress,Istanbul,Turkey.Commission V,WG V/2.
    Buckley S J,Howell J A,Enge H D,et al.2008.Terrestrial laser scanning in geology:Data acquisition,processing andaccuracy considerations[J].Journal of the Geological Society,London,165(3):625—638.
    Hunter G,Pinkerton H,Airey R,et al.2003.The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna[J].Journal of Volcanology and Geothermal Research,123(1/2):203—210.
    Jones R R,Kokkalas S,Mccaffrey K J W.2009.Quantitative analysis and visualization of nonplanar fault surfaces usingterrestrial laser scanning(LIDAR)—The Arkitsa Fault,central Greece,as a case study[J].Geosphere,5(6):465—482.
    Schulz T,Ingensand H.2004.Terrestrial laser scanning-Investigations and applications for high precision scanning[R].www.fig.net/pub/athens/papersts26TS26_1_Schulz_Ingensand.pdf.
    Sequeira V,Fiocco M,Bostrom G,et al.2003.3D Verification of Plant Design.25th ESARDA Symposiumon Safe guardsand Nuclear Material Management,Stockholm,Sweden[R].http:∥mortimer.jrc.it sir Publications/040130DIV-paper%20ESARDA.pdf.
    Wehr A,Lohr U.1999.Airborne laser scanning:An introduction and overview[J].ISPRS Journal of Photogrammetryand Remote Sensing,54(2/3):68—82.
    Wei Z,He H,Shi F,et al.2010.Topographic characteristics of rupture surface associated with the12May,2008Wenchuan earthquake[J].Bulletin of Seismological Society of America,100(5B):2669—2680.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心