断层带中超压流体及其在地震和成矿中的作用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震断层带中局部存在对其力学和化学过程有着重要影响的超压流体 ,对这种超压流体的证据、超压机制及其在地震活动和成矿中的作用等进行了探讨。流体超压是在断层带中渗透性构造发生强烈时空变化的前提下产生的 ,其主要原因是构造加压及深源高压流体的注入。当流体压力升至一临界值时 ,断层发生灾难性破裂 ,即地震 ,增加断层的渗透性 ,超压流体快速向低压带 (室或域 )流动 ,同时因减压流体所携载水溶物种 (包括成矿物质 )大量沉淀析出 ,降低断层带的渗透性。地震泵吸和流体超压机制的交替作用使得这一过程得以周期性地进行。
The influences of overpressured fluids on mechanical and chemical processes in faults are very important. Based on the summary of the former research accomplishments, discussion is given in this paper on evidences and mechanism for overpressure of fluids in faults and their relation to earthquake and hydrothermal metallogeny. The following conclusions are induced from the present related information and theory knowledge. The overpressured fluids located in faults are formed by tectonic compaction of country rock sourced fluids and injection of high pressured fluids from depth, under the precondition that the permeability structures are varied greatly in time and space. When the fluid pressures rise to a threshold, the catastrophic ruptures are broken out, that is earthquake, creating high permeability in the fault zone. Simultaneously, the overpressured fluids quickly flow to low pressured places, and a lot of aqueous soluble species, including metallogenic materials, are precipitated from the flowing fluids, resulting from dramatically dropping of fluid pressures and resulting in decreasing of permeability of the fault zone. These processes can be circulated by alternatively running of the seismic pumping and the fluid overpressure mechanism.
引文
[1]  Hobbs B E. Deformation of rocks and fluids in the Crust[J]Geological Science and Technology Information. 1987,6 (1) :38~ 44.[Hobbs B E.地壳中的流体与岩石变形 [J] .地质科技情报 ,1987,6 (1) :38~ 44.]
    [2 ]  Etheridge M A,Wall V J,Cox S F. High fluid pressures dur-ing regional m etamorphism and deformation:implication form ass transport and deformation mechanism [J] . J GeophysRes,1984,89(B6 ) :4344~ 435 7.
    [3]  Harrison W J,Summa L L . Palehydrogeology of Gulf of Mex-ico basin[J] .American Journal of Science. 1991,2 91:19~176 .
    [4]  Main D M,Mackenzie A A. Prediction of pore fluid pressuresin sedimentary basin[J] . Marine and Petroleum Geology,1990 ,7:5 5~ 6 8.
    [5 ]  Moore JC,Vrolijk P.Fluids in accretionary prisms[J] .Re-views of Geophysics,1992 ,30 :113~ 136 .
    [6 ]  Bolton A J,Clennel M B,Maltman A J. Nonlinear stress de-pendence of permeability:A mechanism for episodic fluid flowin accretionary wedges[J] . Geology,1999,2 7:2 39~ 2 48.
    [7] Sibson R H.Fluid flow accompanying faulting:Field evidenceand models[A] . In:Simpson D W,Richard P G,eds. Earth-quake Prediction—An International Review[C] .Maurice Ew-ing:American Geophysical Union,1981. 5 93~ 6 0 3.
    [8]  Hippler S J. Deformation microstructures and diagenesis insandstone adjacent to an extensional fault:Implication for theflow and entrapment of hydrocarbons[J] . Am erican Associa-tion of Petroleum Geologists Bulletin,1993,77:6 2 5~ 6 37.
    [9]  Rice JR. Fault stress states,pore pressure distributions andthe weakness of the San Andereas fault[A ] . In:Evans B,Wang T-F,eds.Earthquake Mechanics and Transport Prop-erties of Rocks[C] . L ondon:Academ ic Press,1992 . 475~5 0 3.
    [10 ]  Scholz C H,Anders M H. The permeability of faults in themechanical involvement of fluids in faulting:Open-File Re-port94-2 2 8[M] .Denver:U S Geological Survey,1994. 2 47~ 2 5 3.
    [11]  Caine JS,Evans J P,Foster C B.Fault zone architectureand permeability structure[J] . Geology,1996 ,2 4:10 2 5~10 2 8.
    [12 ]  Parry W T,Bruhn R L . Pore fluid and seismogenic charac-teristics of fault rock at depth on the Wasatch fault,U tah[J] .JGeophys Res,1986 ,91:730~ 744.
    [13]  Parry W T,Bruhn R L. Fluid pressure transients on seismo-genic normal faults[J] .Tectonophysics,1990 ,179:335~344.
    [14 ]  Hubbert M K,Rubey W W. Role of fluid pressure in me-chanics of overthrust faulting[J] .Geol Soc Am Bull,195 9,70 :115~ 2 0 5 .
    [15 ]  Cox S F.Faulting processes at high fluid pressures:An ex-ample of fault valve behavior from the Wattle Gully F ault,Victoria,Australia[J] .JGeophys Res,1995 ,10 0 :12 84~12 86 0 .
    [16 ]  Fenoglio M A,Johnston M J S,Byerlee JD. Magnetic andelectric associated changes in high pore pressure in faultzones:Application to the Loma Ptieta UL F emissions[J] .JGeophys Res,1995 ,10 0 :12 95 1~ 12 95 8.
    [17]  Magee M E,Zoback M D. Evidence for a weak interplatethrust faulting and fluid expulsion[J] .Geology,1993,2 1:80 9~ 812 .
    [18]  Sibson R H. Rupture nucleation on unfavorably orientedfaults[J] . Bull Seis Soc Am,1990 ,81:2 493~ 2 497.
    [19]  Byerlee J.Model for episodic flow of high-pressure water infault zones before earthquakes[J] . Geology,1993,2 1:30 3~30 6 .
    [2 0 ]  Phillips R.Hydraulic fracturing and mineralization[J] .JGe-ol Soc L ondon,1972 ,12 3:337~ 35 9.
    [2 1]  Cox S F,Etheridge M A,Wall J V.The role of fluids insyntectonic mass transport and localization of metamorphicvein-type ore deposits[J] . Ore Geol Rev,1986 ,2 :6 5~ 86 .
    [2 2 ]  Hickman S,Sibson R H,Bruhn R.Introduction to specialsection:mechanical involvement of fluid in faulting [J] . JGeophys Res,1995 ,10 0 :12 831~ 12 840 .
    [2 3]  Sibson R H. Implication of fault-valve behavior for rupturenucleation and recurrence[J] .Tectonophysics,1992 ,2 11:2 83~ 2 93.
    [2 4]  Robert F. Gold-quartz veins in metam orphic terranes andtheir bearing on the role of fluids in faulting[J] .JGeophysRes,1995 ,10 0 :12 86 1~ 12 879.
    [2 5 ]  Wilkinson J J,Johnston J D.Pressure fluctuations,phaseseparation and gold precipitation during seismic fracturepropagation[J] . Geology,1996 ,2 4:395~ 398.
    [2 6 ]  Moore JC,Moore G F,Cochrane G R,Tobin H J.Nega-tive-polarity seismic reflections along faults of the Oregon ac-cretionary prism:Indication of overpressuring[J] .JGeophysRes,1995 ,10 0 :12 895~ 12 90 6 .
    [2 7]  Eberhart-Phillips D,Stanley W D,Rodriguez B D,et al.Surface seismic and electrical methods to detectfluids relatedto faulting[J] . JGeophys Res,1995 ,10 0 :12 919~ 12 936 .
    [2 8]  Tobin H T,Moore JC,Moore J F.F luid pressure in thefrontal thrust of Oregon accretionary prism:Experim entalconstraints[J] .Geology,1994,2 2 :979~ 982 .
    [2 9]  Davis D,Suppe J,Dahlen F A. Mechanics of fold-and-thrustbelts and accretionary wedges[J] . JGeophys Res,1983,88:115 1~ 1172 .
    [30 ]  Hickman S. Stress in the lithosphere and the strength of ac-tive faults[J] .Rev Geophys,1991,2 9:75 9~ 775 .
    [31]  Morrow C,Randey B,Byerlee J. Frictional strength and theeffective pressure law of montrnorillonite and illite clays[A] .In:Evans B,Wang T-F,eds.Fault Mechanics and Trans-port Properties of Rocks[C] . San Diego:Academic Press,1992 . 6 9~ 88.
    [32 ]  Sleep N H,Blarpied M L . Creep,compaction and weak rhe-ology of major faults[J] .Nature,1992 ,35 9:6 87~ 6 92 .
    [33]  Gudmundsson A. Emplacement of dikes,sills and crustalm agma chamber at divergent plate boundaries[J] . Tectonophysics,1990 ,176 :2 5 7~ 2 75 .
    [34] Gudmundsson A.F luid overpressure and stress drop innfault zones[J] . Geophys Res L etters,1999,2 6 :115~ 118.
    [35 ]  Gold T.Terrestrial sources of carbon and earthquake out-gassing[J] . JPetroleum Geol,1979,1(3) :3~ 19.
    [36 ]  Gold T,Soter S. Fluid ascent through the solid lithosphereand its relation to earthquake[J] .Pure and Applied Geo-physics,1984/85 ,12 2 :492~ 5 30 .
    [37] Talwani P,Acree S.Pore pressure diffusion and the mecha-nism of reservoir induced seismicity [J] . Pure and AppliedGeophysics,1985 ,12 2 :947~ 96 5 .
    [38]  Nicholso C,Wesson R L . Earthquake hazard associated withdeep well injection-A report to the US Environmental Protec-tion Agency[J] .US Geol Surv Bull,1990 ,195 1:1~ 74.
    [39]  Boulier A M,Robert F. Paleseimic events recorded in Ar-chean gold-quartz vein networks,Val d'Or Abitibi,Quebec[J] . Journal of Structural Geology,1992 ,14 :16 1~ 179.
    [40 ]  Sibson R H,Robert F ,Poulsen K H. High-angle reversefaults,fluid pressure cycling and mesothermal gold deposits[J] . Geology,1988,16 :5 5 1~ 5 5 5 .
    [41]  Jébrak M.Hydrothermal breccia in vein-type ore deposits:Areview of mechanism,morphology and size distribution [J] .Ore Geology Review,1997,12 :111~ 134.
    [42 ]  Hobbs B E.Principles involved in mobilization and remobi-lization[J] . Ore Geology Review,1987,2 :37~ 45 .
    [43] L iu L iangming,Wu Yanzhi.Mechanical-chemical interac-tions during mobilized mineralization of disperse elem ents inm etamorphic rocks[J] .Geological Science and TechnologyInformation. 1994,13(4) :5 9~ 6 4.[刘亮明 ,吴延之 .变质岩中分散元素的活化转移成矿过程中的力学—化学相互作用[J] .地质科技情报 ,1994,13(4) :5 9~ 6 4.]
    [44]  Ridey J. The relations between mean rock stress and fluidflow in the crust:With reference to vein-and lode-style golddeposits[J] . Ore Geology Review,1993,8:2 3~ 37.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心