利用超高压变质岩的P波速度估算地下岩石的热导率
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
岩石热导率是了解地球内部热传导过程的重要参数之一,但热导率的测量在室内和野外都比较复杂.如何利用容易获得的岩石物理参数(如超声波速度)来估算岩石的热导率就显得非常重要.通过对中国大陆科学钻探(CCSD)主孔655件样品热导率和超声波速度的相关分析,把样品分为新鲜榴辉岩、退变质榴辉岩、副片麻岩和正片麻岩4类,并分别建立了利用岩石P波速度估算热导率的计算方程.回归计算表明,榴辉岩热导率和P波速度之间的相关性较大,相关系数在0.7左右,片麻岩显示的相关系数比较小,在0.4~0.5之间.鉴于样本数量较大,这种结果足以表明热导率和P波速度之间可以用给定的线性关系来表达.为了检验获得的方程,在CCSD主孔中选取典型的岩性单元,利用测得的P波速度估算相应的热导率,结果显示估算值和实测热导率平均值非常接近,表明利用P波估算岩石热导率的方程是可行和实用的,为本区和相似地区大地热流和热结构计算提供了热导率的计算方法和依据,因而具有重要的岩石物理学和地球物理意义.
The relationship between thermal conductivity and ultrasonic velocity has been analyzed by using 655 samples from scientific boreholes drilled in Donghai, eastern China. The samples are classified into 4 different types: fresh eclogite, retrograde eclogite, orthogneiss and paragneiss. We established equations that enabled us to predict thermal conductivity from measuring the P-wave velocity of each type of rock. The regression analysis of thermal conductivity vs. ultrasonic velocity yields a correlation coefficient of about 0.7 for eclogite and 0.5-0.4 for gneiss. The result shows that the linear equation is sufficient to describe the relationship between thermal conductivity and ultrasonic velocity. For verifying these equations, we chose several typical lithology units of the CCSD mainhole to estimate thermal conductivity from P-wave velocity. The calculated values are consistent with the measured average value of thermal conductivity, which means these equations can be used to infer thermal conductivity for underground rocks through P-wave velocity in the Donghai region or similar area. These results are of great significance for thermal conductivity selection in thermal structure analysis or heat flow calculations.
引文
Burkhardt,H.,Honarmand,H.,Pribnow,D.,1995.Testmeasurementswithanewthermalconductivityboreholetool.Tectonophysics,244(1-3):161-165.
    Chapman,D.S.,1986.Thermalgradientsinthecontinentalcrust.In:Dawson,J.B.,ed.,Thenatureofthelowercontinentalcrust.GeologicalSocietySpecialPublication,24:63-70.
    Chi,Q.H.,Yan,M.C.,1998.RadioactiveelementsofrocksinNorthChinaplatformandthethermalstructureandtemperaturedistributionofthemoderncontinentallith-osphere.ChineseJ.Geophys.,41(1):38-47(inChi-nesewithEnglishabstract).
    Demirci,A.,Grgülü,K.,Durutürk,Y.S.,2004.Thermalconductivityofrocksanditsvariationwithuniaxialandtriaxialstress.InternationalJournalofRockMechan-icsandMiningSciences,41:1133-1138.
    Durutürk,Y.S.,1999.Thevariationofthermalconductivitywithpressureinrocksandtheinvestigationofitseffectinunder-groundmines.CumhuriyetUniversity,Sivas,Turkey,188.
    Grgülü,K.,2004.Determinationofrelationshipsbetweenthermalconductivityandmaterialpropertiesofrocks.JournalofU-niversityofScienceandTechnology,Beijing,11:297.
    Hartmann,A.,Rath,V.,Clauser,C.,2005.Thermalconductivityfromcoreandwelllogdata.InternationalJournalofRockMechanicsandMiningSciences,42:1042-1055.
    Lee,T.C.,1989.Thermalconductivitymeasuredwithalinesourcebetweentwodissimilarmediaequalstheirmeancon-ductivity.J.Geophys.Res.,94(B9):12443-12447.
    zkahraman,H.T.,Selver,R.,Isik,E.C.,2004.Determina-tionofthethermalconductivityofrockfromP-waveve-locity.InternationalJournalofRockMechanicsandMiningSciences,41:703-708.
    Popov,Y.,Tertychnyi,V.,Romushkevich,R.,etal.,2003.Interrelationsbetweenthermalconductivityandotherphysicalpropertiesofrocks:Experimentaldata.PureAppl.Geophys.,160:1137-1161.
    Pribnow,D.,Williams,C.F.,Burkhardt,H.,1993.Welllog-derivedestimatesofthermalconductivityincrystallinerockspenetratedbythe4kmdeepKTBVorbohrung.Geophys.Res.Lett.,20(12):1155-1158.
    Prinow,D.,Sass,J.H.,1995.Determinationofthermalconductivi-tyfordeepboreholes.J.Geophs.Res.,100:9981-9994.
    Sass,J.H.,Lachenbruch,A.H.,Moses,T.H.,1992.HeatflowfromascientificresearchwellatCajonPass,Cali-fornia.J.Geophys.Res.,97(B4):5017-5030.
    Seipold,U.,Raab,S.,2000.AMethodtomeasurethermalconductivityandthermaldiffusivityunderporeandcon-finingpressure.Phys.Chem.Earth.,25(2):183-187.
    Shen,X.J.,Yang,S.Z.,Shen,J.Y.,1995.HeatflowstudyandanalysisalongtheGolmud-Ejinaqigeotransect.Chi-neseJ.Geophys.,38(Suppl.II):86-97(inChinesewithEnglishabstract).
    Silliman,S.E.,Neuzil,C.E.,1990.Boreholedeterminationofformationthermalconductivityusingathermalpulsefrominjectedfluid.J.Geophys.Res.,95(B6):8697-8704.
    Singh,T.N.,Sinha,S.,Singh,V.K.,2006.Predictionofthermalconductivityofrockthroughphysico-mechani-calproperties.BuildingandEnvironment(inpress).
    Williams,C.F.,Anderson,R.N.,Broglia,C.,etal.,1988.Insituinvestigationsofthermalconductivity,heatproduction,andhydrothermalcirculationintheCajonPassscientificdrill-hole,California.Geophys.Res.Lett.,15(9):985-988.
    迟清华,鄢明才,1998.华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布.地球物理学报,41(1):38-47.
    沈显杰,杨淑贞,沈继英,1995.格尔木-额济纳旗地学断面热流分析与研究.地球物理学报,38(增Ⅱ):86-97.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心