地电场水文地质因素及裂隙水主体渗流方向逐日计算
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2007年西昌和天祝地电场观测台阵建立,随后两年西昌台阵地电场的TGF-A波形明显,天祝台阵则以TGF-B波形出现.台阵内各台站间地电场相关性高,这受地电场潮汐机理的支持;不同台站或同一台站的不同方向地电场潮汐波峰谷值差异明显,地电场潮汐机理和场地水文地质资料表明,这主要与岩石、裂隙度、裂隙优势走向、含水度、透水率、水矿化度和裂隙水压力差等因素相关.潮汐电信号形成于裂隙水或水中电荷周期性移动,电荷被岩壁吸附或脱离产生噪声,该信噪比在同一台阵内基本相同,信噪比值与潮汐电信号产生过程和场地电磁背景关系密切.应用地电场潮汐谐波振幅计算裂隙水主体渗流方向,结果与应用潮汐波峰谷值法基本一致,这消除了峰谷值法取值的偶然误差.2008年汶川MS8.0地震前,两台阵内都存在场地裂隙水主体渗流方向的短临变异现象,西昌台阵这种变异更明显.
Xichang and Tianzhu geoelectric field observational arrays were set up in 2007. In the following two years, TGF-A waveform appeared obviously in Xichang array, while TGF-B waveform was observed in Tianzhu array. Geoelectric fields at different stations in either of the arrays were highly correlated, which was supported by tidal mechanism of geoelectric fields. Tidal peak-to-trough values at different stations or in different orientations of the same station are obviously different, and this is closely related to such factors as rock characteristics, degree of cracking, preferred orientation of cracks, water ratio, seepage rate, degree of water mineralization and pressure difference of crack water, according to tidal mechanism and hydrogeologic data. Tidal electrical signals come from periodic movement of crack water or electric charge. When charge is adsorbed to rocks or breaks away from rocks, noise is produced. The signal-to-noise ratio appears almost identical within the same array, and it is closely related to the signal generating process and electromagnetic background on the site. Tidal harmonic amplitudes were used to compute preferred orientation of crack water seepage, which yielded the same result as with peak-to-trough value method, avoiding accidental error caused by taking peak and trough values. Before the Wenchuan MS8.0 earthquake in 2008, there were short-term and impending variations of preferred orientation of crack water seepage in both of the arrays, but more obvious in Xichang array.
引文
崔效锋,谢富仁,张红艳.2006.川滇地区现代构造应力场分区及动力学意义[J].地震学报,28(5):451--461.
    范莹莹,杜学彬,Zlatnicki J,谭大诚,刘君,安张辉,陈军营,郑国磊,解滔.2010.汶川MS8.0大震前的电磁现象[J].地球物理学报,53(12):2887--2898.
    黄清华.2005a.地震电磁观测研究简述[J].国际地震动态,(11):2--5.
    黄清华.2005b.一种评估地震前兆可信度的方法[J].地球物理学报,48(3):637--642.
    黄清华,刘涛.2006.新岛台地电场的潮汐响应与地震[J].地球物理学报,49(6):1745--1754.
    黄清华,林玉峰.2010.地震电信号选择性数值模拟及可能影响因素[J].地球物理学报,53(3):535--543.
    李乐,侯贵廷,潘文庆,琚岩,张庆莲,肖芳锋.2011.逆断层对致密岩石构造裂缝发育的约束控制[J].地球物理学报,54(2):466--473.
    刘百篪.1979.中国大陆地震的应力调整场动态模型[J].地震地质,1(3):24--40.
    马钦忠,钱家栋.2003.地下介质非均匀结构对地电场信号的影响[J].地震,23(1):1--7.
    马钦忠,冯志生,宋治平,赵卫国.2004.崇明与南京台震前地电场变化异常分析[J].地震学报,26(3):304--312.
    钱复业,赵玉林.2005.地电场短临预报方法研究[J].地震,25(2):33--40.
    孙正江,王华俊.1984.地电概论[M].北京:地震出版社:23--28.
    谭大诚,赵家骝,席继楼,杜学彬,徐建明.2010.潮汐地电场特征及机理研究[J].地球物理学报,53(3):544--555.
    谭大诚,王兰炜,赵家骝,席继楼,刘大鹏,于华,陈军营.2011.潮汐地电场谐波及各向波形影响要素[J].地球物理学报,54(7):1842--1853.
    谭大诚,赵家蹓,席继楼,刘大鹏,安张辉.2012.青藏高原中强地震前的地电场变异及构成解析[J].地球物理学报,55(3):875--885.
    徐文耀.1992.Sq发电机电流的逐日变化和Sq指数[J].地球物理学报,35(6):676--683.
    许忠淮,汪素云,黄雨蕊,高阿甲.1989.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报,32(6):636--647.
    张培震,王琪,马宗晋.2002.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,9(2):430--441.
    张学民,翟彦忠,郭学增,郭建芳.2007.远震前的地电场潮汐波异常[J].地震学报,29(1):48--58.
    赵国泽,陆建勋.2003.利用人工源超低频电磁波监测地震的试验与分析[J].中国工程科学,5(10):27--33.
    赵国泽,陈小斌,肖骑彬,王立风,汤吉,詹艳,王继军,张继红,Utada H,Uyeshima M.2009.汶川MS8.0级地震成因三“层次”分析:基于深部电性结构[J].地球物理学报,52(2):553--563.
    赵和云,阮爱国,杨荣,梁子斌,杨长福.1998.天祝台地电场三年观测资料的分析与讨论[M]∥石特临,陈有发,李清河编.地震地电学发展与展望.兰州:兰州大学出版社:123--137.
    左恒,吴爱祥,王贻明,江怀春.2007.地电场对裂隙岩块中溶浸液渗流特性影响的研究[J].岩石力学与工程学报,26(5):972--976.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心