武汉九峰地震台超导重力仪观测分析研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
连续重力观测和GPS的技术结合能够监测到物质迁移和地壳垂直形变之间的量化关系.和相对重力测量以及绝对重力测量技术相比,其避免了时间分辨率和观测精度低,无法精细描述观测周期内的物质迁移过程问题.本文利用武汉九峰地震台超导重力仪SGC053超过13000h连续重力观测数据;同址观测的绝对重力仪观测结果;气压数据;周边GPS观测结果;GRACE卫星的时变重力场;全球水储量模型等资料,采用同址观测技术、调和分析法、相关分析方法在扣除九峰地震台潮汐、气压、极移和仪器漂移的基础上,利用重力残差时间序列和GPS垂直位移研究物质迁移和地壳垂直形变之间的量化关系.结果表明:在改正连续重力观测数据的潮汐、气压、极移的影响后,不仅准确观测到2009年的夏秋两季由于水负荷引起的约(6~8)×10-8 m.s-2短期的重力变化.而且在扣除2.18×10-8(m.s-2)/a仪器漂移和水负荷的影响后,验证了本地区长短趋势垂直形变和重力变化之间具有一致的负相关性规律.同时长趋势表明该地区地壳处于下沉,重力处于增大过程,增加速率约为1.79×10-8(m.s-2)/a.武汉地区重力梯度关系约为-354×10-8(m.s-2)/m.
The relationship between the mass transfer beneath the earth surface and the vertical deformation could be studied using continuous relative gravimetry and continuous GPS observation.Compared to mobile relative gravimetry and absolute gravimetry,continuous relative gravimetry could be used to monitor the whole process of gravity changes and mass transfer,avoiding low measurement precision and temporal resolution.In this paper,more than 13000 hours gravity data recorded at Jiufeng seismic station using superconducting gravimetry(SGC053) are analyzed along with co-located absolute gravimetry data,air pressure,vertical displacement of surrounding GPS stations,WUHN IGS site and WHJF site,GRACE monthly time-variable gravity and two global continental water storage models(GLDAS,CPC).Gravity variations induced by solid earth tide,air pressure,pole tide and continental water loading are corrected using harmonic analysis method,atmospheric pressure admittance model,pole tide model and the correlation analysis with GRACE results and/or water storage models,then instrument drift is also corrected using co-located absolute gravity measurements.Based on the above processing,the relationship between the residual gravity time series and GPS vertical deformation is addressed.The harmonic analysis result for SGC053 gravity records,spanning about one and half years,shows that the white noise is about 1.14~1.40×10-8m·s-2 and the tidal factor errors of dominant tidal groups reach about 0.1‰.Compared to ocean tide loading(3×10-8m·s-2),the gravity due to air pressure(12×10-8m·s-2) and pole tide(10×10-8m·s-2) is much larger.The drift of SGC053,about 2.18×10-8(m·s-2)/a,is estimated using 4 absolute gravity co-located records of FG5-232.The result shows that the residual gravity caused by continental water loading in summer and autumn is about(6~8)×10-8m·s-2,by comparing residual gravity variations with both GARCE result and global continental water loading(GLDAS,CPC).Gravity variations corrected for water loading show perfect negative correlation with the vertical deformation of the GPS station,about 15km away from SGC053,so as to data in spring and winter.And the long-term vertical crustal deformation is subsidence and the gravity change rate is about 1.79×10-8(m·s-2)/a.The ratio of the changes in gravity and altitude related to the local vertical crustal movement is about-354×10-8(m·s-2)/m.
引文
[1]廖海华,钟敏,周旭华.利用GRACE卫星重力资料解算气候驱动的地表周年垂直形变.地球物理学报,2010,53(5):1091-1098.Liao H H,Zhong M,Zhou X H.Climate-driven annual vertical deformation of the solid Earth calculated from GRACE.Chinese J.Geophys.(in Chinese),2010,53(5):1091-1098.
    [2]詹金刚,王勇.卫星重力捕捉龙滩水库储水量变化.地球物理学报,2011,54(5):1187-1192.Zhan J G,Wang Y.Detect water storage variation of Longtan Reservoir with GRACE data.Chinese J.Geophys.(in Chinese),2011,54(5):1187-1192.
    [3]周新,孙文科,付广裕.重力卫星GRACE检测出2010年智利眠M w 8.8地震的同震重力变化.地球物理学报,2011,54(7):1745-1749.Zhou X,Sun W K,Fu G Y.Gravity satellite GRACE detects coseismic gravity changes caused by2010Chile Mw8.8 earthquake.Chinese J.Geophys.(in Chinese),2011,54(7):1745-1749.
    [4]申重阳,李辉,孙少安等.重力场动态变化与汶川M s 8.0地震孕育过程.地球物理学报,2009,52(10):2547-2557.Shen C Y,Li H,Sun S A,et al.Dynamic variations of gravity and the preparation process of the Wenchuan Ms8.0 earthquake.Chinese J.Geophys.(in Chinese),2009,52(10):2547-2557.
    [5]Sun W K,Wang Q,Li H,et al.Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau:Geodetic evidence of increasing crustal thickness.Geophys.Res.Lett.,2009,36:L02303,doi:10.1029/2008GL036512.
    [6]Sato T,Miura S,Sun W K,et al.Gravity and uplift rates observed in Southeast Alaska and their comparison with GIA model predictions.J.Geophys.Res.,2012,117:B01401,doi:10.1029/2011JB008485.
    [7]孙和平,许厚泽,陈武等.香港地区重力固体潮和海潮负荷特征研究.地球物理学报,2006,49(3):724-734.Sun H P,Hsu H Z,Chen W,et al.Study of Earth’s gravity tide and oceanic loading characteristics in Hong Kong area.Chinese J.Geophys.(in Chinese),2006,49(3):724-734.
    [8]周江存,孙和平.海潮对卫星重力场恢复的影响.地球物理学报,2007,50(1):115-121.Zhou J C,Sun H P.Effect of ocean tide on recovery of satellite gravity field.Chinese J.Geophys.(in Chinese),2007,50(1):115-121.
    [9]孙和平,崔小明,徐建桥等.超导重力技术在探讨核幔边界黏性特征中的初步应用.地球物理学报,2009,52(3):637-645.Sun H P,Cui X M,Xu J Q,et al.Preliminary application of superconductive gravity technique on the investigation of viscosity at core-mantle boundary.Chinese J.Geophys.(in Chinese),2009,52(3):637-645.
    [10]孙和平,徐建桥,Ducarme B.基于全球超导重力仪观测资料考虑液核近周日共振效应的固体潮实验模型.科学通报,2003,48(6):610-614.Sun H P,Xu J Q,Ducarme B.Experimental earth tidal models in considering nearly diurnal free wobble of the Earth′s liquid core.Chinese Science Bulletin(in Chinese),2003,48(6):610-614.
    [11]Sun H P,Takemoto S,Hsu H Z,et al.Precise tidal gravity recorded with superconducting gravimeters at stations Wuhan(China)and Kyoto(Japan).J.Geodesy,2001,74(10):720-729.
    [12]孙和平,徐建桥,Ducarme B.基于国际超导重力仪观测资料检测地球固态内核的平动振荡.科学通报,2004,49(8):803-813.Sun H P,Xu J Q,Ducarme B.Detection of the translational oscillation of the Earth′s solid inner core based on the international SG observations.Chinese Science Bulletin(in Chinese),2004,49(8):803-813.
    [13]孙和平,郑大伟,丁晓利等.利用小波技术检测重力亚潮汐频段的特征信号.科学通报,2006,51(8):958-965.Sun H P,Zheng D W,Ding X L,et al.Detection of the special gravity signals in sub-tidal band by using wavelet technique.Chinese Science Bulletin(in Chinese),2006,51(8):958-965.
    [14]Teferle F N,Bingley R M,Orliac E J,et al.Crustal motions in Great Britain:evidence from continuous GPS,absolute gravity and Holocene sea level data.Geophys.J.Int.,2009,178(1):23-46.
    [15]Richter B,Zerbini S,Matonti F,et al.Long-term crustal deformation monitored by gravity and space techniques at Medicina,Italy and Wettzell,Germany.J.Geodyn.,2004,38(3-5):281-292.
    [16]Francis O,Camp M V,van Dam T,et al.Indication of the uplift of the Ardenne in long-term gravity variations in Membach(Belgium).Geophys.J.Int.,2004,158(1):346-352.
    [17]Crossley D,Hinderer J,Boy J P.Regional gravity variations in Europe from superconducting gravimeters.J.Geodyn.,2004,38(3-5):325-342.
    [18]Chen X D,Kroner C,Sun H P,et al.Determination of gravimetric parameters of the gravity pole tide usingobservations recorded with superconducting gravimeters.J.Geodyn.,2009,48(3-5):348-353.
    [19]Abdelgelil M,Pagiatakis S,Elrabbany A.Frequency-dependent atmospheric pressure admittance of superconducting gravimeter records using least squares response method.Phy.Earth Planet.Int.,2008,170(1-2):24-33.
    [20]van Camp M,Francis O.Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?J.Geodesy,2007,81(5):337-344.
    [21]van Camp M,Williams S D P,Francis O.Uncertainty of absolute gravity measurements.J.Geophys.Res.,2005,110:B05406,doi:10.1029/2004JB003497.
    [22]van Camp M,Métivier L,de Viron O,et al.Characterizing long-time scale hydrological effects on gravity for improved distinction of tectonic signals.J.Geophys.Res.,2010,115:B07407,doi:10.1029/2009JB006615.
    [23]Zerbini S,Raicich F,Richter B,et al.Hydrological signals in height and gravity in northeastern Italy inferred from principal components analysis.J.Geodyn.,2010,49(3-4):190-204.
    [24]Andersen O B,Seneviratne S I,Hinderer J,et al.GRACE-derived terrestrial water storage depletion associated with the2003European heat wave.Geophys.Res.Lett.,2005,32:L18405,doi:10.1029/2005GL023574.
    [25]Weise A,Kroner C,Abe M,et al.Gravity field variations from superconducting gravimeters for GRACE validation.J.Geodyn.,2009,48(3-5):325-330.
    [26]周江存,孙和平,徐建桥.用地表和空间重力测量验证全球水储量变化模型.科学通报,2009,54(9):1282-1289.Zhou J C,Sun H P,Xu J Q.Validating global hydrological models by ground and space gravimetry.Chinese Science Bulletin(in Chinese),2009,54(9):1282-1289.
    [27]徐建桥,周江存,罗少聪等.武汉台重力长期变化特征研究.科学通报,2008,53(5):583-588.Xu J Q,Zhou J C,Luo S C,et al.Study on characteristics of long-term gravity changes at Wuhan station.Chinese Science Bulletin(in Chinese),2008,53(5):583-588.
    [28]孙文科,长谷川崇,张新林等.高斯滤波在处理GRACE数据中的模拟研究:西藏拉萨的重力变化率.中国科学:地球科学,2011,41(9):1327-1333 Sun W K,Hasegawa T,Zhang X L,et al.Effects of Gaussian filter in processing GRACE data:Gravity rate of change at Lhasa,southern Tibet.Science China Earth Sciences(in Chinese),2011,41(9):1327-1333.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心