岩石高速摩擦实验与地震物理过程
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
简述了最近20年来国内外岩石高速摩擦实验研究领域的进展和动态:岩石高速摩擦实验技术的发展实现了对高滑动速率、大位移的地震过程的实验模拟;其结果揭示了岩石和断层泥在地震滑动速率下的力学性状,深化了对断层滑动弱化机制、临界滑动距离、以及地震发生过程的认识和理解;实验在假玄武玻璃成因方面取得了重要进展,并提出了断层发生地震滑动可能留下的其它地质证据,可望为研究断层滑动性状与地震物理过程提供新的思路和信息。岩石高速摩擦实验今后的发展方向主要包括:发展具有加温系统和孔隙压系统的岩石高速摩擦实验装置,研究水热作用下岩石和断层泥的高速摩擦性状;室内实验和地震资料分析相结合研究断层滑动和地震机制;室内实验和野外地质调查相结合探索断层发生地震错动的地质证据等等。
The progress of research on high-velocity rock frictional experiments in China and abroad in last 20 years is reviewed briefly. The progress in this field is mainly presented at following aspects. (a) The development of experimental technique in high-velocity rock friction has realized the simulation on earthquake process with high slip rate and large displacement become realistic. (b) The results reveal the mechanical properties of rocks and fault gouges under seismic slip velocity,which promotes our understanding on the weakening mechanism of fault slip,the critical slip distance and the earthquake process. (c) The experiments have made important progress in the cause of pseudotachylite and suggested other possible geological evidences left by seismic fault slip,which may offer new ideas and information for studying fault frictional properties and physical process of earthquake. It is prospected that the further study in high-velocity rock frictional experiment will focus on following aspects:developing high-velocity rock friction apparatus with temperature and pore pressure systems and investigating the high-velocity frictional properties of rocks and fault gouges under hydrothermal condition,studying mechanism of fault slip and earthquake by combining laboratory experiment and seismic data analysis,and seeking after geological records of seismic slip by combining laboratory experiment and field geological investigation.
引文
[1]Brace WF,Byerlee J D.Stick-Slip as a Mechanismfor Earth-quakes[J].Science,1966,153:990-992.
    [2]Byerlee J D.Friction of rocks[J].Pure Appl.Geophys.,1978,116:615-626.
    [3]Dieterich J H.Ti me-dependent friction and the mechanics of stick slip[J].Pure Appl.Geophys.,1978,116:790-806.
    [4]Dieterich J H.Modeling of rock friction:1.Experi mental re-sults and constitutive equations[J].J.Geophys.Res.,1979,84:2161-2168.
    [5]Runa A L.Slipinstability and state-variable friction laws[J].J.Geophys.Res.,1983,88:10359-10370.
    [6]Dieterich J H.A model for the nucleation of earthquake slip[J].Geophys.Monogr.,1986,6:37-47.
    [7]Ohnaka M.Earthquake source nucleation:a physical model for short-term precursors[J].Tectonophysics,1992,211:149-178.
    [8]Paterson M S,Wong T F.Experi mental Rock Deformation-The Brittle Field(2ndEd)[M].Heidelberg,Germany:Spring-er,2005:347.
    [9]Spray J G.Artificial generation of pseudotachylyte using fric-tion welding apparatus:Si mulation of melting on a fault plane[J].J.Struct.Geol.,1987,9:49-60.
    [10]Shi mamoto T,Tsutsumi A.A new rotary-shear high-speed frictional testing machine[J].Journal of the Tectonic Re-search Group of Japan,1994,39:65-78(in Japanese with English abstract).
    [11]Shi mamoto T,Tsutsumi A,et al..Friction,deformation and fluid-flow apparatuses at Kyoto University[EB/OL].Kozo Chishisu,2006,L4111A,issn:1340-757049:49-71(Japanese).
    [12]Week J D,Tullis T E.Frictional sliding of dolomite:Avari-ationin constitutive behavior[J].J.Geophys.Res.,1985,90:7821-7826.
    [13]Goldsby D L,Tullis T E.Lowfrictional strength of quartz rocks at subseismic slip rates[J].Geophys.Res.Lett.,2002,29:1844,doi:10.1029/2002GL015240.
    [14]Di Toro,Goldsby D L,Tullis T E.Frictionfalls towards ze-ro in quartz rock as slip velocity approaches seismic rates[J].Nature,2004,427:436-439.
    [15]Fuji M,Machida K,Takei T,et al..Effect of wettability on adhesion force between silica particles evaluated by atomicforce microscopy measurement as a function of relative hu-midity[J].Langmuir,1999,15:4584-4589.
    [16]Jones R,Pollock H M,Cleaver J AS,et al..Adhesionforce between glass and silicon surface in air studied by AFM:Effects of relative humidity,particle,size,roughness,and surface treat ment[J].Langmuir,2002,18:8045-8055.
    [17]Fayed M E.Handbook of Powder.Science and Technology2nd ed.[M].Boca Raton:CRC Press,1997:898.
    [18]Mizoguchi K,Hirose T,Shi mamoto T,et al..Moisture-re-lated weakening and strengthening of a fault activated at seis-mic slip rates[J].Geophysical research letters,2006,33:L16319,doi:10.1029/2006GL026980.
    [19]Han R,Shi mamoto T,Ando J,et al..Seismic slip recordin carbonate-bearing fault zones:An insight from high-velocity friction experi ments on siderite gouge[J].Geology,2007,35:1131-1134.
    [20]Han R,Shi mamoto T,Hirose T,et al..Ultra-lowfriction of carbonate faults caused by thermal decomposition[J].Sci-ence,2007,316:878-881,Doi:10.1126/science.1139763.
    [21]Brantut N,Schubnel A,Brunet F,et al..High velocityfric-tional properties of pure kaolinite and natural kaolinite-bear-ing fault gouges[J].Geophysical Research Abstracts,2007,9:00927,SRef-ID:1607-7962/gra/EGU2007-A-00927.
    [22]Mizoguchi K,Hirose T,Shi mamoto T,et al..Reconstruc-tion of seismic faulting by high-velocity friction experi ments:An example of the1995Kobe earthquake[J].Geophysical Research Letters,2007,34:L01308,doi:10.1029/2006GL027931.
    [23]Green H WⅡ,Marone C.Instability of Deformation[J].Re-views in Mineralogy and Geochemistry,2002,51:181-199,doi:10.2138/gsrmg.51.1.181.
    [24]Hirose T,Shi mamoto T.Growth of molten zone as a mecha-nismof slip weakening of si mulated faults in gabbro during frictional melting[J].J.Geophys.Res.,2005,110:B05202,doi:10.1029/2004JB003207.
    [25]Rice J R.Flash heating at asperity contacts and rate-depend friction[J].Eos.Trans.AGU,1999,80(46):Fall Meet(Suppl.):681.
    [26]Tsutsumi A,Shi mamoto T.Frictional properties of monzo-diorite and gabbro during seismogenic fault motion[J].J.Ge-ol.Soc.,1996,102:240-248.
    [27]Tsutsumi A,Shi mamoto T.High-velocity frictional proper-ties of gabbro[J].Geophysical Reaserch Letters,1997,24:699-702.
    [28]Tsutsumi A,Shi mamoto T.Temperature Measurements a-long Si mulated Faults during Seismic Fault Motion[J].Geol.Congr.,1997,5:223-232.
    [29]Di Toro,Hirose T,Nielsen S,et al..Natural and Experi-mental Evidence of Melt Lubrication of Faults During Earth-quakes[J].Science,2006,311:647-649.
    [30]Sibson R H.Generation of pseudotachylyte by ancient seis-mic faulting[J].Geophysical Journal of the Royal Astronomi-cal Society,1975,43:775-794.
    [31]Sibson R H.Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanismfor partial or total stress relief[J].Nature,1973,243:66-68.
    [32]Lachenbruch A H.Frictional heating,fluid pressure,andthe resistance to fault motion[J].J.Geophys.Res.,1980,85:6097-6112.
    [33]Mase C W,Smith L.Effects of frictional heating onthe ther-mal,hydrologic,and mechanical response of a fault[J].J.Geophys.Res.,1987,92:6249-6272.
    [34]Andrews D J.A fault constitutive relation accounting for thermal pressurization of pore fluid[J].J.Geophys.Res.,2002,107:2363,doi:10.1029/2002JB001942.
    [35]Sibson R H.Thickness of the seismic slip zone[J].Bull.Seismol.Soc.Am.,2003,93:1169-1178.
    [36]Rice J R.Heating and weakening of faults during earthquake slip[J].J.Geophys.Res.,2006,111:B05311,doi:10.1029/2005JB004006.
    [37]Andrews D J.Partition of energy in Earthquakes(abstract)[A]∥Radiated Energy andthe Physics of Faulting.Chapman Conference[C].Portland,Maine:Am.Geophys.Union,2005.
    [38]Ohtomo Y,Shi mamoto T.Significance of thermal fracturing in the generation of fault gouge during rapid fault motion:an experi mental verification.Structural Geology[J].Journal of Tectonic Research Group of Japan,1994,39:135-144.(in Japanese with English abstract).
    [39]Jaeger J C,Cook N G W.Fundamentals of Rock Mechanics.(Third Ed.)[M].London:Chapman and Hall,1979:593.
    [40]Scholz C H.The Mechanics of Earthquake Faulting[M].Cambridge,UK:Cambridge University Press,1990.
    [41]Ida.Y.Cohesive force across the tip of a longitudinal shear crack and Griffith's specific surface energy[J].J.Geophys.Res.1972,84:3796-3805.
    [42]Wibberley Christopher A J,Shi mamoto T.Earthquake slip weakening and asperities explained by thermal pressurization[J].nature,2005,436:689-692.doi:10.1038/na-ture03901.
    [43]Ide S,Takeo M.Determination of constitutive relations of fault slip based on seismic wave analysis[J].J.Geophys.Res.,1997,102:27379-27391.
    [44]Fukuyama E,Mikumo T,Olsen B.Esti mation of the critical slip-weakening distance:theoretical background.Bull[J].Seism.Soc.Am.,2003,93:1835-1840.
    [45]Mikumo T,Yagi Y.Slip-weakening distancein dynamic rup-ture of in-slab normal-faulting earthquakes[J].Geophys.J.Int.,2003,155:443-455.
    [46]Mikumo T,Olsen K B,Fukuyama E,et al..Stress-break-down ti me and slip-weakening distance inferred fromslip-ve-locity functions on earthquake faults[J].Bull.Seism.Soc.,Am..2003,93:264-282.
    [47]Scholz C H.The critical slip distance for seismic faulting[J].Nature,1988,336:761-763.
    [48]Marone C J,Kilgore B D.Scaling of the critical slip distance for seismic faulting with shear strain in fault zones[J].Na-ture,1993,362:618-621.
    [49]Ohnaka M,Shen L F.Scaling of the rupture process from nucleation to dynamic propagation:i mplications of geometric irregularity of the rupturing surfaces[J].J.Geophys.Res.,1999,104:817-844.
    [50]Hirose T,Shi mamoto T.Fractal di mension of molten sur-faces as a possible parameter to infer the slip-weakening dis-tance of faults from natural pseudotachylytes[J].J.Struct.Geol.,2003,25:1569-1574.
    [51]Hirose T,Shi mamoto T.Slip-Weakening Distance of Faults during Frictional Melting as Inferred from Experi mental and Natural Pseudotachylytes[J].Bulletin of the Seismological Society,2005,95:1666-1673.
    [52]Noda H,Shi mamoto T.Thermal Pressurization and Slip-Weakening Distance of a Fault:An Example of the Hanaore Fault,Southwest Japan[J].Bulletin of the Scismological So-ciety of America,2005,95:1224-1233,doi:10.1785/0120040089.
    [53]O'Hara K,Mizoguchi K,Shi mamoto T,et al..Experi mental frictional heating of coal gouge at seismic slip rates:Evidence for devolatilization and thermal pressurization of gouge fluids[J].Tectonophysics,2006,424:109-118.
    [54]Magloughlin J F,Spray J G.Frictional melting process and products in geological materials:introduction and discussion[J].Tectonophysics,1992,204:197-206.
    [55]Spray J G.Viscosity determinations of some frictionally gen-erated silicate melts:i mplications for fault zone rheology at high strain rates[J].J.Geophys.Res.,1993,98:8053-8068.
    [56]Allen.Mechanism of frictional fusion in fault zones[J].J.Struct.Geol.,1979,1:231-243.
    [57]O'Hara K D.Major and trace element constraints on the petrogenesis of a fault-related pseudotachylyte,western Blue Ridge province,North Carolina[J].Tectonophysics,1992,204:279-288.
    [58]Lin A,Shi mamoto T.Selective melting processes as inferred fromexperi mentally generated pseudotachylytes[J].Jounal of Asian Earth Sciences,1998,16:533-545.
    [59]Obata M,Karato S.Ultramafic pseudotachylyte from the Bal muccia peridotite,Ivrea-Verbano zone,northern Italy[J].Tectonophysics,1995,242:313-328.
    [60]Spray J G.Generation and crystallization of an amphibolite shear melt:Aninvestigation using radial friction welding ap-paratus[J].Contrib.Mineral Petrol.,1988,99:464-475.
    [61]Killick A M.Pseudotachylite generated as a result of a drill-ing"burn-in"[J].Tectonophysics,1990,171:221-227.
    [62]Wenk H R.Are pseudotachylytes products of fracture or fu-sion?[J].Geology,1978,6:507-511.
    [63]Spray J G..Pseudotachylytes controversy:Fact of friction?[J].Geology,1995,23:1119-1122.
    [64]Tsutsumi A.Size distribution of clastsin experi mentally pro-duced pseudotachylytes[J].J.Struct.Geol.,1999,21:305-312.
    [65]Cowan D S.Do faults preserve a record of seismic slip?A field geologist's opinion[J].J.Struct.Geol.,1999,21:995-1001.
    [66]Fukuchi T,Mizoguchi K,Shi mamoto T.Ferri magnetic reso-nance signal produced by frictional heating:A newindicator of paleoseismicity[J].J.Geophys.Res.,2005,110:B12404,doi:10.1029/2004JB003485.
    [67]Fukuchi T.Strong ferri magnetic resonance signal and mag-netic susceptibility of the Noji ma pseudotachylyte in Japan and their i mplication for coseismic electromagnetic changes[J].J.Geophys.Res.,2003,108(B6):2312,doi:10.1029/2002JB002007.
    [68]Ishida S,Fuji mura Y,Fujiyoshi K,et al..ESRstudies of i-ron oxide in porcelain body[J].Yogyo kyokaishi,1983,91:37-42.
    [69]Ishida S,Fuji mura Y,Fujiyoshi K,et al..ESR studies of Feions in fired kaolinite and sericite[J].J.Clay Sci.Jpn.,1983,23:7-17.
    [70]Tanikawa W,Mishi ma T,Hirono T,et al..High magnetic susceptibility producedin high-velocity frictional tests on core samples fromthe Chelungpu fault in Tai wan[J].Geophysical Reseach Letters,2007,34:L15304,doi:10.1029/2007GL030783.
    [71]Han R,Shi mamoto T,et al..Friction-induced decomposition of siderite and dolomite and their weakening effect on si mula-ted faults at seismic slip-rates[M].Singapore:Asica Oceania Geosciences Society,2006:797-798.
    [72]Sato K,Hirose T,Kumagai H,et al..A K-Ar age reset of frictionally melted gabbro and detect for degassed noble gas(abs.)[A]∥Geochi mica et Cosmochi mica Acta.Special Supplement,Abstracts of the17th Annual V.M.Goldschmidt Conference[C].Cologne,Germany,2007,71:A878-A878.
    [73]Boutareaud S,Calugaru D,Han R,et al..Clay-clast aggre-gates:Anewtextural evidence for seismic fault sliding?[J].Geophysical Research Letters,2008,35:L05302,doi:10.1029/2007GL032554.
    [74]Etheridge M A,Wall UJ,Vernon R H.The role of the fluid phase during regional metamorphism and deformation[J].Journal of Meramorphic Geology,1983,205-226.
    [75]Hickman S,Sibson R,Bruhn R.Introduction to special sec-tion:Mechanical involvement of fluids in faulting[J].Journal of Geophysical Research,1995,100:12831-12840.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心