基于附加质量法的大型固定顶储液罐基底隔震分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
鉴于目前储液罐基底隔震研究多采用一维简化的Haroun-Housner模型,基于附加质量法,考虑液体对流质量和脉冲质量,建立储液罐三维简化的附加质量模型。通过分析比较相同地震激励下不同高径比储液罐罐的Haroun-Housner模型、附加质量模型和流固耦合模型的动力响应,验证了附加质量模型的合理性。针对某大型固定顶储液罐,基于此简化模型,基底引入FPS隔震支座,系统地研究了基底隔震储液罐在不同场地条件下的非线性地震动力响应。分析结果表明:FPS隔震支座对储液罐地震响应有很好的控制作用,有效地降低了液体脉冲分量的运动,避免了罐壁发生屈曲破坏,但放大了液体对流分量的运动。
The simplified one-dimensional Haroun-Housner model was used widely in seismic isolation study of liquid storage tanks.A simplified three-dimensional mechanical model was established on the basis of added mass method,considering liquid convective and impulsive masses.Validity of the model was verified with dynamic responses of Haroun-Housner model and fluid-solid coupling model under same seismic excitations.Using the model,nonlinear seismic response of a large base-isolated liquid storage tank with fixed roof and friction pendulum system(FPS) bearing was studied systematically under different site conditions.Results showed that FPS isolation bearing is effective in controlling the seismic response of the liquid storage tank,it decreases liquid impulsive motion and avoids the buckling failure of the tank shell,but increases liquid convective motion.
引文
[1]黄锋.网壳拱顶在大型固定顶储罐中的应用[J].南京化工大学学报,2000,22(3):39-42.
    [2]焦驰宇,胡世德,管仲国.FPS抗震支座分析模型的比较[J].振动与冲击,2007,26(10):113-117.
    [3]Wolfgang A W,Steffen G,Ekkehard R.A strong couplingpartitioned approach for fluid-structure interaction with freesurfaces[J].Computers&Fluids,2007,36(1):169-183.
    [4]Haroun M A.Vibration studies and tests of liquid storagetanks[J].Earthquake Engineering&Structural Dynamics,1983,11(2):179-206.
    [5]孙建刚,王向楠,赵长军.立式储罐基底隔震的基本理论[J].哈尔滨工业大学学报,2010,42(6):639-643.
    [6]Malhotra P K.New method for seismic isolation of liquid-storage tanks[J].Earthquake Engineering&StructuralDynamics,1997,26(8):839-847.
    [7]Shrimali M K,Jangid R S.Seismic response of base-isolatedliquid storage tanks[J].Journal of Vibration and Control,2003,10(9):1201-1208.
    [8]Emre A,Eren U.Parametric analysis of liquid storage tanksbase isolated by curved surface sliding bearings[J].SoilDynamics and Earthquake Engineering,2010,30(1-2):21-31.
    [9]Panchal V,Jangid R.Seismic response of liquid storage tankswith variable friction pendulum isolation[J].Journal of CivilEngineering,2011,15(6):1041-1055.
    [10]Zhang R F,Weng D G,Ren X S.Seismic analysis of a LNGstorage tank isolated by a multiple friction pendulum system[J].Earthquake Engineering and Engineering Vibration,2011,10(2):253-262.
    [11]Housner G W.The dynamic behavior of water tanks[J].Bulletin of the Seismological Society of America,1963,53(2):381-387.
    [12]Juan C V,Luis A G,Luis E S.Fundamental modes of tank-liquid systems under horizontal motions[J].EngineeringStructures,2006,28(10):1450-1461.
    [13]Juan C V,Luis A G,Luis E S.Dynamic buckling ofanchored steel tanks subjected to horizontal earthquakeexcitation[J].Journal of Constructional Steel Research,2006,62(6):521-531.
    [14]李杨,李自力,张艳.中美欧储罐抗震规范中地震作用的比较研究[J].世界地震工程,2009,25(1):122-130.
    [15]Veletsos A S,Shivakumar P.Tanks containing liquids orsolids[M].Southampton(UK):Computational MechanicsPublications,1997.
    [16]陈志平.大型非锚固储油罐应力分析与抗震研究[D].杭州:浙江大学,2006.
    [17]马千里,陆新征,叶列平.层屈服后刚度对地震响应离散性影响的研究[J].工程力学,2008,25(7):133-141.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心