我国《建筑抗震设计规范》基底剪力系数研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
介绍了基底地震剪力的影响因素及美国、新西兰、加拿大及欧洲抗震规范采用振型分解反应谱法进行分析时的基底地震剪力最小需求,并从中美规范剪力系数所考虑因素的对比及高阶振型对长周期结构基底地震剪力影响的分析中发现,剪力系数应满足2个必要条件:剪力系数应与反应谱形状(由场地类型等因素决定)相关;剪力系数应反映高阶振型的影响,即满足单调性条件。根据SEAOC的研究报告,针对我国GB 50011—2010《建筑抗震设计规范》剪力系数计算式存在的不足,提出了修正建议。对比分析表明,修正后的剪力系数计算式更符合基底地震剪力的特性,且工程适用范围更广,可为抗震规范今后的修订提供参考。
Factors affecting seismic base shear and the minimum requirements of seismic base shear for modal response spectrum analysis in the seismic codes of the United States,New Zealand,Canada and Europe were presented.Comparing the factors that were considered in seismic shear factor between the Chinese and American seismic codes and discussion about influence of higher-mode response on seismic base shear of long-period structure,it turns out that seismic shear factor should meet two necessary conditions.Firstly,seismic shear factor associated with the response spectrum shape(determined by site class etc.).Then,seismic shear factor reflecting the effects of higher-mode and complied with the monotonicity criterion.According to the research report of the SEOAC,the amended seismic shear factor calculation formulae that can avoid the shortcomings of the original one in Chinese 'Code for seismic design of buildings'(GB 50011—2010) was provided.The comparative analysis shows that,the amended seismic shear factor calculation formulae can better reflect the characteristics of seismic base shear and further increase the scope of engineering application.It can provide a reference for the future revision of the seismic code.
引文
[1]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-28.(WANGYayong.A review of seismic response spectra,timehistory analysis and energy method[J].Journal ofBuilding Structures,2000,21(1):21-28.(inChinese))
    [2]王亚勇.汶川地震建筑震害启示:三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.(WANG Yayong.Lessons learnt from buildingdamages in the wenchuan earthquake:three earthquakeperformance objectives and basic requirements forseismic design of buildings[J].Journal of BuildingStructures,2008,29(4):26-33.(in Chinese))
    [3]ASCE/SEI 7-10 Minimum design loads for buildingsand other structures[S].Virginia:American Society ofCivil Engineers,2010.
    [4]EN 1998-1:2004 Eurocode 8:part1:design ofstructures for earthquake resistance[S].London:European Committee for Standardization,2004.
    [5]NBCC.National building code of Canada[S].Ottawa:National Research Council of Canada,2005.
    [6]NZS1170.5:2004 Structural design actions:part5:earthquake actions:New Zealand[S].Wellington:Standards New Zealand,2004.
    [7]GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(GB50011—2010Codefor seismic design of buildings[S].Beijing:ChinaArchitecture&Buildings Press,2010(in Chinese))
    [8]Haselton C B,Deierlein G G.Assessing seismiccollapse safety of modern reinforced concrete moment-frame buildings[R].California:Pacific EarthquakeEngineering Research Center,2007:217-226.
    [9]Paulay T,Priestley M J N.Seismic design of reinforcedconcrete and masonry buildings[M].New York:JohnWiley&Sons Inc,1992:85-89.
    [10]FEMA P-750.NEHRP recommended seismic provisionsfor new buildings and other structures[R].WashingtonDC:Federal Emergency Management Agency,2009:126-127,134.
    [11]International Conference of Building Officials.UBC-IBCstructural comparison and cross reference(1997-2000)[M].Whittier,USA:ICBO Publications Department,2000:25-27.
    [12]SEAOC Seismology Committee.Recommended lateralforce requirements and commentary[R].7th ed.California:Structural Engineers Association ofCalifornia,1999:105-107.
    [13]Chopra A K.Dynamics of structures:theory andapplications to earthquake engineering[M].3rd ed.New Jersey:Pearson Education Inc,2007:697-700,784-788.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心