两淮煤田煤系岩石热导率特征及其对地温场的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
随着煤炭开采深度的增大,矿井高温问题日益突出,因此必须对矿区的地温场特征进行研究。基于安徽淮北和淮南煤田煤系所测定的127块岩石样品的热导率数据,结合区内前人的研究成果,全面报道两淮煤田岩石热导率参数及其特征,并分析热导率对现今地温场的影响。结果表明:两淮煤田煤系岩石热导率变化范围为0.37~4.36 W/(m·K),平均值为2.54 W/(m·K);热导率与岩性、埋藏深度、地层时代和密度等密切相关,砂岩的热导率普遍大于泥岩和煤,热导率和深度、密度均表现为正相关关系;岩石导热性的差异对区内地温场的影响较大,导热性差的松散层和煤层往往会造成地温异常,且上覆松散层愈厚其地温愈高。
With the increase of coal mining depth, the problem of high temperature in mine becomes more and more obvious. Therefore, it is necessary to study the geothermal field in mining area. Based on the results of thermal conductivity of tested 127 rock samples of coal measure strata in Huainan-Huaibei coalfield and combining the previous measured data in the region, this paper reported the parameters and the characteristics of rock thermal conductivity in Huainan-Huaibei coalfield comprehensively and analyzed the influencing factors of thermal conductivity from different aspects. The results showed that the thermal conductivity of coal measure strata in Huainan-Huaibei coalfield ranges from 0.37 W/(m·K) to 4.36 W/(m·K) and the average is 2.54 W/(m·K). The correlation between the thermal conductivity and lithology, buried depth, stratigraphic age and density is significant. The thermal conductivity of sandstone is generally greater than that of mudstone and coal. There is a positive correlation between thermal conductivity and depth, density. The differences of thermal conductivity of rocks have a big influence on the regional geo-temperature gradient, poor heat conductivity of unconsolidated layers and coal seam tends to cause ground temperature anomaly, and the thicker overlying unconsolidated layers, the higher ground temperature.
引文
[1]余恒昌.矿山地热与热害治理[M].北京:煤炭工业出版社,1991.
    [2]郭平业.我国深井地温场特征及热害控制模式研究[D].北京:中国矿业大学,2009.
    [3]谭静强,琚宜文,侯泉林,等.淮北煤田宿临矿区现今地温场分布特征及其影响因素[J].地球物理学报,2009,52(3):732–739.
    [4]谭静强,琚宜文,张文永,等.淮北宿临矿区现今地温场的构造控制[J].煤炭学报,2009,34(4):449–454.
    [5]雒毅,琚宜文,谭静强.孙疃-赵集勘探区现今地温场特征及其高温热害预测[J].中国科学院研究生院学报,2011,28(6):734–739.
    [6]王伟光,许光泉,李佩全.丁集矿区地温变化规律及深部热害预测[J].煤矿安全,2010,41(6):103–105.
    [7]谭静强,琚宜文,张文永,等.淮北煤田中南部大地热流及其煤层气资源效应[J].中国科学:地球科学,2010,40(7):855–865.
    [8]段忠丰,庞忠和,杨峰田.华北地区煤系地层岩石热导率特征及对热害的影响[J].煤炭科学技术,2013,41(8):15–18.
    [9]周昀涵,罗新荣,李浪,等.淮南矿区煤系地层热物性参数与大地热流分析[J].煤矿安全,2011,42(12):116–119.
    [10]孙占学,张文,胡宝群,等.沁水盆地大地热流与地温场特征[J].地球物理学报,2006,49(1):130–134.
    [11]宋宁,史光辉,高国强.苏北盆地古近系—上白垩统的岩石热导率[J].复杂油气藏,2011,4(1):10–13.
    [12]王钧,黄尚瑶,黄歌山,等.中国地温分布的基本特征[M].北京:地震出版社,1990.
    [13]SEIPOLD U,HUENGES E.Thermal properties of gneisses and amphibolites—high pressure and high temperature investigations of KTB_rock samples[J].Tectonophysics,1998,291:173–178.
    [14]何丽娟,胡圣标,杨文采,等.中国大陆科学钻探主孔动态地温测量[J].地球物理学报,2006,49(3):745–750.
    [15]SASS J H,LACHENBRUCH A H,MOSES T H,et al.Heat flow from a scientific research well at Cajon pass,California[J].Journal of Geophysical Research:Solid Earth,1992,97:5017-5030.
    [16]李红阳,朱耀武,易继承,等.淮南矿区地温变化规律及其异常因素分析[J].煤矿安全,2009,40(11):68–71.
    [17]郭鹏辉,林玉祥,胡燕.区域性温度因素对饱和粘土固结的影响[J].煤田地质与勘探,2012,40(2):62–66.
    [18]苏永荣,张启国.淮南煤田潘谢矿区地温状况初步分析[J].安徽地质,2000,10(2):124–129.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心