基于形状记忆合金的新型消能减震装置抗震性能研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
首先通过形状记忆合金的材性试验研究了形状记忆合金的超弹性变形性能,并将其等效拟合为多线性模型,得到其设计参数,并详细介绍了分析计算时所采用的形状记忆合金的本构模型。针对框架结构的变形特点,提出一种基于形状记忆合金的消能减震装置,即在底层框架柱的反弯点附近设置锚固装置,形状记忆合金索的上端固定在锚固装置上,将其下端锚固在地下,在震时通过其来回反复变形耗散地震能量。然后通过有限元程序对设置形状记忆合金索的新型框架与普通框架进行静力推覆分析和低周反复分析,研究表明新型框架不仅屈服承载力和极限承载力高于普通框架,而且其滞回环更加饱满,累积塑性滞回耗能能力提高了41.4%,形状记忆合金索的滞回环也很饱满,具有优良的耗能能力,最后,比较了对角设置形状记忆合金索的框架的耗能能力与本消能减震装置的耗能能力。因此该消能减震装置在减轻框架柱震害方面具有一定的工程应用价值和前景。
The super-elastic deformation behavior of a shape memory alloy(SMA) was studied through material test,its stress-strain curve was fitted as an equivalent multi-linear model,and its constitutive model was detailedly introduced.According to the deformation characteristics of the frame structure,an energy dissipation device based on shape memory alloys was presented,in which an anchorage device was set near the inflection point of columns,the top of a SMA cable was connected with the anchorage device and its bottom fixed in the ground.When experiencing an earthquake,seismic energy would be dissipated by repeated deformation of the SMA cable.The performances of the SMA frame and the ordinary frame were compared through static pushover analysis and low cyclic analysis.The results show that the SMA frame has a higher yield and ultimate load bearing capacity than the ordinary frame,and its hysteresis loop is broader.The capacity of accumulating plastic hysteretic energy increases by 41.4%.In addition,a comparative study between a frame structure with simply diagonally installed SMA cable and the energy dissipation device proposed in the paper was made,by which the advantages of the proposed device were clearly presented.
引文
[1]吕西林.复杂高层建筑结构抗震理论与应用[M].北京:科学出版社,2007.
    [2]薛素铎,董军辉,卞晓芳,等.一种新型形状记忆合金阻尼器[J].建筑结构学报,2005,26(3):45-50.XUE Su-duo,DONG Jun-hui,BIAN Xiao-feng,et al.A newtype of shape memory alloy damper[J].Journal of BuildingStructures,2005,26(3):45-50(in Chinese)
    [3]薛素铎,石光磊,庄鹏.SMA复合摩擦阻尼器性能的试验研究[J].地震工程与工程振动,2007,27(2):145-151.XUE Su-duo,SHI Guang-lei,ZHUANG Peng.Performancetesting of SMA incorporated friction dampers[J].EarthquakeEngineering and Engineering Vibration,2007,27(2):145-151(in Chinese).
    [4]薛素铎,庄鹏,李彬双.SMA-橡胶支座的力学性能试验研究[J].世界地震工程,2005,21(4):10-15.XUE Su-duo,ZHUANG Peng,LI Bin-shuang.Experimentalstudy on mechanical behavior of SMA-rubber bearing[J].World Earthquake Engineering,2005,21(4):10-15(inChinese).
    [5]王社良.形状记忆合金在结构控制中的应用[M].西安:陕西科学技术出版社,2000.
    [6]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003.
    [7]Song G,Ma N,Li H N.Applications of shape memory alloysin civil structures[J].Engineering Structures,2006:1266-1274.
    [8]Roh J H,Lee I,Han J H.Damping characteristics of SMAfilms and their application for passive vibration isolation[J].International Journal of Applied Electromagnetics andMechanics,2008,27(3):225-241.
    [9]Dolce M,Cardone D,Marnetto R.Implementation and testingof passive control devices based on shape memory alloys[J].Earthquake Engng Struct.Dyn.2000:945-968.
    [10]Baz A,Iman K,Mccoy J,et al.Active vibration control offlexible beams using shape memory actuator[J].Journal ofSound and Vibration,1990,140(3):437-456.
    [11]Wilde K,Gardoni P,Fujino Y.Base isolation with shapememory alloy device for elevated highway bridges[J].Engineering Structure,2000,22:222-229.
    [12]Dolce M,Cardone D.Mechanical behaviour of Shape MemoryAlloys for seismic applications,Austenite NiTi wiressubjected to tension[J].International Journal of MechanicalSciences,2001,43:2657-2677.
    [13]ANSYS,Inc.Theory Reference.ANSYS Release 9.0,2004.
    [14]韩林海.钢管混凝土结构理论与实践(第二版)[M].北京:科学出版社,2007.
    [15]Building Seismic Safety Council.NEHRP Guidelines for theSeismic Rehabilitation of Buildings[S].FEMA-273,Federal Emergency Management Agency,WashingtonDC,1997.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心