岩石边坡潜在失稳区域微震识别方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为深入研究锦屏一级水电站左岸边坡深部岩体微震活动规律并评价边坡稳定性,在已有微震监测资料基础上,结合常规监测数据,并借助RFPA有限元数值模拟手段,分析左岸边坡深部岩体微破裂萌生、发育和扩展的演化机制,解释高程1 829 m处2#固结灌浆平洞多点位移计变化与微震事件时空分布规律之间的内在联系,再现典型剖面边坡渐进破坏全过程,重点阐述高程1 885 m坝顶平台裂缝形成机制。综合施工工况和工程地质情况分析,表明微震监测系统可以有效地识别和圈定边坡深部岩体微破裂区域和潜在滑裂面,边坡外观变形及微震活动性与该部位地质构造及灌浆活动有密切关系,灌浆导致的应力重分布和边坡内部天然裂隙带错动变形是诱发高程1 885 m坝顶平台裂缝的主要原因。研究结果为更好地理解和分析复杂应力条件下岩石边坡变形及其微震活动性诱发失稳机制提供重要的参考。
Based on the results of microseismic monitoring data recorded,the law of microseismicity occurring in the deep rock masses at left bank slope of Jinping I hydropower station is investigated;and the slope stability is evaluated combining with conventional measurement data and numerical simulation using realistic failure process analysis(RFPA) approach.The following aspects are taken into consideration:(1) The evolution mechanism of micro-fractures initiation,growth and expansion in deep rock masses of rock slope is performed.(2) The internal relation between tempo-spatial distribution regularity of microseismic events and variances of multiple position extensometers in consolidation grouting tunnel #2 at the elevation of 1 829 m are interpreted.(3) The full progressive failure processes of rock slope with typical section have been reproduced.(4) The generation mechanism of cracks in the platform of dam crest at the elevation of 1 885 m is in-depth analyzed.Incorporating with site operation conditions and engineering geology,this leads to conclusions:Firstly,microseismic monitoring network installed at right bank slope could availably identify and delineate failure regions and potential sliding surface in deep rock masses.Secondly,visual deformation of rock slope and microseismicity are closely related to geological structures and grouting in the weak-layers.Finally,stress redistribution induced by high pressure cement grouting and slippage deformation of pre-existing fissure zones are the primary factors causing cracks in the platform of dam crest at the elevation of 1 885 m.The research results provide important references to the understanding and analysis of rock slope deformation and associated microseismicity-induced instability mechanism under complex stress conditions.
引文
[1]MENDECKI A J.Seismic monitoring in mines[M].London:Chapman and Hall Press,1996:12–14.
    [2]赵兴东,唐春安,李元辉,等.基于微震监测及应力场分析的冲击地压预测方法[J].岩石力学与工程学报,2005,24(增1):4 745–4 749.(ZHAO Xingdong,TANG Chun′an,LI Yuanhui,et al.Prediction method of rock burst based on microseismic monitoring and stress field analysis[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(Supp.1):4 745–4 749.(in Chinese))
    [3]MENDECKI A J.Data-driven understanding of seismic rock mass response to mining[C]//Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines(RaSiM5).Johannesburg,South Africa:[s.n.],2001:1–9.
    [4]MILEV A M,SPOTTISWOODE S M,RORKE A J,et al.Seismic monitoring of a simulated rockburst on a wall of an underground tunnel[J].Journal of the South African Institute of Mining and Metallurgy,2001,101:253–260.
    [5]GE M C.Efficient mine microseismic monitoring[J].International Journal of Coal Geology,2005,64(1/2):44–56.
    [6]HIRATA A,KAMEOKA Y,HIRANO T.Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation[J].Rock Mechanics and Rock Engineering,2007,40(6):563–576.
    [7]李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009,5(1):122–128.(LI Shulin.Discussion on microseismic monitoring technology and its application to underground project[J].Chinese Journal of Underground Space and Engineering,2009,5(1):122–128.(in Chinese))
    [8]TEZUKA K,NIITSUMA H.Stress estimated using microseismic clusters and its relationship to the fracture system of the Hijiori hot dry rock reservoir[J].Engineering Geology,2000,56(1/2):47–62.
    [9]LYNCH R,MENDECKI A J.High-resolution seismic monitoring in mines[C]//VAN ASWEGEN G,DURRHEIM R J,ORTLEPP W D ed.Rockbursts and Seismicity in Mines-RaSiM5.Johannesburg,South Africa:[s.n.],2001:19–24.
    [10]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2 048–2 053.(LI Shulin,YIN Xiangang,ZHENG Wenda,et al.Research of multi-channel microseismic monitoring system and its application to Fankou lead-zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2 048–2 053.(in Chinese))
    [11]唐礼忠,XIA K W,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1 818–1 824.(TANG Lizhong,XIA K W,LI Xibing.Seismic multi-fractal characteristics in mines and seismicity prediction[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1 818–1 824.(in Chinese))
    [12]杨志国,于润沧,郭然,等.基于微震监测技术的矿山高应力区采动研究[J].岩石力学与工程学报,2009,28(增2):3 632–3 638.(YANG Zhiguo,YU Runcang,GUO Ran,et al.Research of mining based on microseismic monitoring technology in high-stress area[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3 632–3 638.(in Chinese))
    [13]杨承祥,罗周全,唐礼忠.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007,26(4):818–824.(YANG Chengxiang,LUO Zhouquan,TANG Lizhong.Study on rule of geostatic activity based on microseismic monitoring technique in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(4):818–824.(in Chinese))
    [14]刘超,唐春安,李连崇,等.基于背景应力场与微震活动性的注浆帷幕突水危险性评价[J].岩石力学与工程学报,2009,28(2):366–372.(LIU Chao,TANG Chun′an,LI Lianchong,et al.Analysis of probability of water inrush from grout curtain based on background stress field and microseismicity[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):366–372.(in Chinese))
    [15]姜福兴,叶根喜,王存文,等.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1 932–1 938.(JIANG Fuxing,YE Genxi,WANG Cunwen,et al.Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1 932–1 938.(in Chinese))
    [16]李铁,纪洪广.矿井不明水体突出过程的微震辨识技术[J].岩石力学与工程学报,2010,29(1):134–139.(LI Tie,JI Hongguang.Identification of water inrush process of unknown water body using microseismic monitoring tehcnique[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):134–139.(in Chinese))
    [17]徐奴文,唐春安,沙椿,等.锦屏一级水电站左岸边坡微震监测系统及其应用研究[J].岩石力学与工程学报,2010,29(5):915–925.(XU Nuwen,TANG Chun′an,SHA Chun,et al.Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(5):915–925.(in Chinese))
    [18]徐奴文,唐春安,吴思浩,等.微震监测技术在大岗山水电站右岸边坡中的应用[J].防灾减灾工程学报,2010,30(增l):216–221.(XU Nuwen,TANG Chun′an,WU Sihao,et al.Application of microseismic monitoring technique in the right bank slope of Dagangshan Hydropower Station[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(Supp.1):216–221.(in Chinese))
    [19]XU N W,TANG C A,WU S H,et al.Optimal design of microseismic monitoring networking and error analysis of seismic source location for rock slope[J].Advanced Materials Research,2011,163–167:2 991–2 999.
    [20]TANG C A,WANG J M,ZHANG J J.Preliminary engineering appliction of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project[J].Journal of Rock Mechanics and Geotechnical Engineering,2011,2(3):193–208.
    [21]TRIFU C I,SHUMILA V.Microseismic monitoring of a controlled collapse in Field II at Ocnele Mari,Romania[J].Pure and Applied Geophysics,2010,16(1/2):27–42.
    [22]KAISER P K.Seismic hazard evaluation in underground construction[C]//Proceedings of the 7th International Symposium on Rockburst and Seismicity in Mines(RaSiM7).New York:Rinton Press,2009:1–26.
    [23]中国水电顾问集团成都勘测设计研究院.左岸边坡观测成果分析报告[R].成都:中国水电顾问集团成都勘测设计研究院,2009.(HydroChina Chengdu Engineering Corporation.Analysis report on observation results of the left slope,Sichuan Province[R].Chengdu:HydroChina Chengdu Engineering Corporation,2009.(in Chinese))
    [24]宋胜武,向柏宇,杨静熙,等.锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计[J].岩石力学与工程学报,2010,29(3):442–458.(SONG Shengwu,XIANG Baiyu,YANG Jingxi,et al.Stability analysis and reinforcement design of high and steep slopes with complex geology in abutment of Jingping I Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):442–458.(in Chinese))
    [25]LI L C,TANG C A,LI C W,et al.Slope stability analysis by SRM-based rock failure process analysis(RFPA)[J].Geomechanics and Geoengineering,2006,1(1):51–62.
    [26]唐春安,李连崇,李常文,等.岩土工程稳定性分析RFPA强度折减法[J].岩石力学与工程学报,2006,25(8):1 522–1 530.(TANG Chun′an,LI Lianchong,LI Changwen,et al.RFPA strength reduction method for stability analysis of geotechnical engineering[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(8):1 522–1 530.(in Chinese))
    [27]TANG C A,LIU H Y,LEE P K K,et al.Numerical studies of the influences of microstructure on rock failure in uniaxial compression-part I:effect of heterogeneity[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):555–569.
    [28]徐奴文,唐春安,沙椿,等.基于强度折减法的高陡岩质边坡稳定性分析[C]//2009年全国土木工程博士生学术论坛优秀论文集.长沙:中南大学出版社,2009:191–198.(XU Nuwen,TANG Chun′an,SHA Chun,et al.Stability analysis of steep rock slope based on strength reduction technique[C]//Proceedings of Conference on National Doctoral Academic Forum on Civil Engineering in 2009.Changsha:Central South University Press,2009:191–198.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心