基于CPT的地基液化概率评价
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过LOGISTIC模型,以世界范围内19次大地震106个场地的液化案例为基础,构建基于CPT的液化概率评价模型,采用仅通过CPT试验即可获取的锥尖阻力和摩阻比作为评价参数,既体现严格的统计学意义又具有明确的物理意义,预测液化和非液化的可靠性分别达到91.2%和86.8%。并拟合得到液化概率和抗液化安全系数的S型关系曲线以便于工程应用。理论分析与工程实例对比表明,相对于《岩土工程勘察规范》推荐的CPT模型,本文建议模型的评价结果和《建筑抗震设计规范》的SPT模型评价结果更为接近,且物理意义更为明确,为利用现场原位测试数据进行地基液化评价提供了更为简洁、准确的新途径,可以作为规范方法的有益补充。
According to cone penetration test data from 19 strong earthquakes liquefaction site around the world,a model for evaluating probability has been developed based on LOGISTIC regression analyses using the normalized cone penetration resistance and the friction ratio.The model not only satisfies the statistic requirements but also highlights the physical meanings of the model parameters. The estimation veracity of liquefaction is 91.2% and that of non-liquefaction is 86.8%.Furthermore,the relationship between the factor of safety against liquefaction and the probability of liquefaction has been established for practical purpose.Through theoretical and contractive analyses on a representative sample,the estimation veracity of the developed CPT model goes near to the SPT model of Code for Seismic Design of Buildings and the CPT model of Code for Investigation of Geotechnical Engineering.Therefore,a new simple method will be used to access soil liquefaction,which can be used as a significant supplement to the code.
引文
[1]孙悦,袁晓铭.第11届国际土动力学和地震工程会议及第13届地震工程会议砂土液化研究综述[J].世界地震工程,2006,22(4):15~20.
    [2]陈国兴,张克绪,谢君斐.以剪切波速为指标的液化判别方法及其适用性[J].哈尔滨建筑大学学报,1996,29(1):97~103.
    [3]汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997,88~90.
    [4]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [5]佘跃心.砂土液化判别方法可靠性评价[J].岩土力学,2004,25(5):803~807.
    [6]中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2001.
    [7]Youd T.L,Idriss I.M.Liquefaction resistance of soils:Summary report from the 1996 NCEER and 1998 NCEER/NSFworkshops on evaluation of liquefaction resistance of soils[J].Geotechnical and Geoenvironmental Engineering,ASCE,2001,4:297~313.
    [8]Haldar A,Tang W H.Probabilistic evaluation of liquefactionpotential[J].Journal of the Geotechnical Engineering Division,ASCE,1979,105(GT2):145~163.
    [9]高大钊.土力学可靠性原理[M].北京:中国建筑工业出版,1989.
    [10]王济川,郭志刚.LOGISTIC回归模型方法与应用[M].北京:高等教育出版社,2001.
    [11]Samson S C Liao,Robert V Whitman.Regression models forevaluation liquefaction probability[J].Journal of Engineering,ASCE,1988,4:389~411.
    [12]周健,白冰,徐建平.土动力理论与计算[M].北京:中国建筑工业出版社,2001,124~125.
    [13]袁启旺.可液化地基土的分类研究[J].淮阴工学院学报,2008,17(1):79~82.
    [14]中华人民共和国行业标准.静力触探技术规则(TBJ37-93)[S].北京:中国建筑工业出版社,1991.
    [15]袁启旺.基于模糊点数据的地基液化评价[J].水运工程,2008,(1):19~23.
    [16]阮永芬,侯克鹏.粉土地震液化判别方法研究的现状和实际存在的问题[J].昆明理工大学学报,2000,25(1):64~67.
    [17]洪楠,侯军.Sas for windows(V8)统计分析系统教程新编[M].北京:清华大学出版社,北京交通大学出版社,2004.
    [18]C.H.Juang,C.J.Chen.CPT liquefaction analysis,part 2:Reliability for design[J].Geotechnique.2000,(5):593~599.
    [19]P.K.Robertson,C.E.Wride.Evaluating cyclic liquefactionpotential using cone penetration test[J].J.Can,Geotech,1998,35(3):442~459.
    [20]Lin,P.S,Chang T.S,Chang C.W.Application of largepenetration tests in the evaluation of gravelly soil liquefactionpotential[A].Proc.,Conf.on Comprehensive Evaluation of SoilLiquefaction Analysis on Chi-Chi Earthquake,Taichung,Taiwan[C].2002,121~124.
    [21]衡朝阳,裘以惠.含粘粒砂土抗液化性能的试验研究[J].工程地质学报,2001,9(4):339~344.
    [22]佘跃心,刘汉龙,高玉峰.场地液化势评价概率模型[J].工程勘察,2002,(5):4~7.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心