砂土各向异性对挡土墙抗震性能影响数值分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
指出相同砂土在不排水三轴拉伸条件下测得的临界状态强度远低于在三轴压缩条件下的强度,这归因于土的各向异性.挡土墙在地震作用下变形与破坏的程度与填土的临界状态强度密切相关.正确估计土的强度对于评价挡土墙的抗震性能具有重要意义.对于受被动土压力作用的挡土墙,如果不考虑土的各向异性,可能会过高估计土的临界状态强度,即土液化后能够提供的被动土压力的大小,从而过高估计挡土墙的安全储备.对挡土墙抗震性能进行完全耦合有效应力分析,计算结果表明:对于受被动土压力作用的挡土墙,砂土内在各向异性对其抗震性能影响显著;对于受主动土压力作用的挡土墙影响轻微.
Recent laboratory investigations indicate that the stress-strain-strength responses of loose granular soils are appreciably affected by the fabric orientation of the soil relative to the frame of principal stresses. A sand specimen exhibiting a dilative response during triaxial compression may show a contractive response during triaxial extension under otherwise identical conditions. This observation is of practical importance for applications concerning with essentially undrained loading conditions because the effective mean normal stress at failure.Consequently,the shear strength associated with an undrained contractive path is considerably lower than those following a dilative path. This raises a question about the impact of soil anisotropy on seismic performance of retaining structures subjected to active and passive earth pressures,because the directions of principal stresses in retained soils for the two cases are very different. This paper presents a set of fully coupled finite element analyses incorporating an anisotropic sand model. The analyses reveal that the impact of fabric anisotropy could be significant when the retaining structure is under passive earth pressure conditions.It shows that the impact of fabric anisotropy on soil dilatancy,and consequently the critical state strength,should be taken into consideration in performance-based design of passive earth pressure loaded retaining structures.
引文
[1] Vaid Y P, Chern J C.饱和砂土往复与单调加载不排水 响应[C] //往复加载条件下土工试验技术进展.底特 律:美国土木工程师学会, 1985, 120-147(英文版).
    [2] Vaid Y P, Thomas J.液化及液化后砂土的性质[J]. 岩土工程学报, 1995, 121(2): 163-179 (英文版).
    [3] Vaid Y P, Sivathayalan S. Fraser三角洲砂土在单剪和 三轴试验中静态与往复加载液化势[J].加拿大岩土 工程学报, 1996, 33(2): 281-289 (英文版).
    [4] Riemer M F, Seed R B.影响稳定状态线表征位置的因 素[J].岩土及岩土环境工程学报, 1997, 123(3): 281-288 (英文版).
    [5] Nakata Y, Hyodo M, Murata H,等.主应力旋转条件下 砂土的流动变形[J].土与基础, 1998, 38(2): 115- 128 (英文版).
    [6]杨仲轩.内在各向异性对散粒土性质的影响研究[D]. 香港:香港科技大学, 2005 (英文版).
    [7] Yoshimine M, Ishihara K, Vargas W.主应力方向和中间主应力对砂土不排水剪切性质的影响[J].土与基 础, 1998, 38(3): 179-188 (英文版).
    [8]明海燕,李相崧.二维完全耦合岩土地震工程分析程 序SUMDES2D [R].香港科技大学土木工程系研究报 告,香港:香港科技大学, 2001 (英文版).
    [9]明海燕,李相崧.二维完全耦合有限元地震分析程序 SUMDES2D[J].深圳大学学报理工版,2004,21 (3): 224-230.
    [10]明海燕,李相崧.用于流动液化变形分析的临界状态 砂土模型[J].深圳大学学报理工版, 2004, 21(2): 126-133.
    [11]李相崧, Dafalias Y F.无粘性土的剪胀性[J].岩土 技术, 2000, 5(4): 449 -460 (英文版).
    [12]李相崧.与状态相关的剪胀性砂土模型[J].岩土技 术, 2002, 52(3): 173-186 (英文版).
    [13]李相崧, Dafalias Y F.砂土内在各向异性的本构模拟 [J].岩土及岩土环境工程学报, 2002, 128 (10): 868-880 (英文版).
    [14]李相崧, Dafalias Y F.包括非共轴变形的砂土各向异 性的本构模拟方法[J].岩土技术, 2004, 54(1):41-55 (英文版).
    [15] Oda M, Nakayama H.在屈服方程中引入砂土内在各 向异性[C]. Satake M, Jenkins J T.散粒材料微观力 学,阿姆斯特丹: Elsevier, 1988, 81-90 (英文版).
    [16] Curray J R.二维朝向数据的分析[J].地质学报, 1956, 64: 117-131 (英文版).
    [1] Vaid Y P, Chern J C. Cyclic and monotonic undrained re- sponse of saturated sands [ C] //Advances in the Art of Testing Soils Under Cyclic Loading, Detroit: ASCE, 1985, 120-147.
    [2] Vaid Y P, Thomas J. Liquefaction and postliquefaction be- havior of sand [J]. Journal of Geotechnical Engineering, 1995, 121(2): 163-179.
    [3] Vaid Y P, Sivathayalan S. Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests [J]. Canadian Geotechnical Journal, 1996, 33(2): 281-289.
    [4] Riemer M F, Seed R B. Factors affecting apparent position of steady-state line [J]. Journal of Geotechnical and Geo- environmental Engineering, 1997, 123(3): 281-288.
    [5] Nakata Y, Hyodo M, Murata H, et al. Flow deformation of sands subjected to principal stress rotation [ J]. Soils and Foundations, 1998, 38(2): 115-128.
    [6] YANG Z X. Investigation of Fabric Anisotropic Effects on Granular Soil Behavior [ D]. Hong Kong: Hong Kong University of Science and Technology, 2005.
    [7] Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on undr- ained shear behavior of sand [J]. Soils and Foundations, 1998, 38(3): 179-188.
    [8] MING HY, Li X S. SUMDES2D, a two dimensional fully- coupled geotechnical earthquake analysis program [ R]. Report to the Dept of Civil Engineering, Hong Kong: Hong Kong University of Science and Technology, 2001.
    [9] MING HY, LI X S. SUMDES2D, a 2D fully coupled FE earthquake analysis program [J]. Journal of Shenzhen U- niversity Science and Engineering, 2004, 21 (3): 224- 230 (in Chinese).
    [10] MING HY, LI X S. Unified critical state sand model in flow-liquefaction deformation analysis [J]. Journal Uni- versity Science and Engineering, 2004, 21(2): 126-133 (in Chinese).
    [11] Li X S, Dafalias Y F. Dilatancy for cohesionless soils [J]. G啨otechnique, 2000, 50(4): 449-460.
    [12] Li X S. A sand model with state-dependent dilatancy [J]. G啨otechnique, 2002, 52(3): 173-186.
    [13] Li X S, Dafalias Y F. Constitutive modeling of inherently anisotropir sand behavior [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128 (10):868-880.
    [14] Li X S, Dafalias Y F. A constitutive framework for anisotropic sand including noncoaxial deformation[J].Geotechnique, 2004, 54(1): 41-55.
    [15] Oda M, Nakayama H.Introduction of inherent anisotropy of soils in the yield function [C]. Satake M, Jenkins J T.Micromechanics of Granular Materials, Amsterdam;Elsevier,1988, 81-90.
    [16] Curray J R.Analysis of two-dimensional orientation data [J]. Journal of Geology,1956, 64:117-131.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心