基于微驱动材料的智能摩擦阻尼器试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
摩擦阻尼器结构简单、安装容易、性能稳定,具有广泛的应用领域。传统摩擦阻尼器,因阻尼力不具备调节能力,而只能对结构的振动产生有限的控制效果。压电材料和磁致伸缩材料分别具有在电场或磁场激励作用下的快速变形能力,是两类重要的智能材料。利用以上两类智能材料制成的驱动器,调节摩擦阻尼器摩擦面的正压力,进而达到调节摩擦力的目的,是实现摩擦阻尼器智能化的重要途径。利用三个形状基本相同,材质分别为Terfenol-D金属、树脂基磁致伸缩复合材料以及压电陶瓷制成的驱动器,与同一参数的摩擦阻尼器复合,制成了三个阻尼力可调的智能摩擦阻尼器,并完成了它们的阻尼力及响应时间测试。结果表明,利用Terfenol-D驱动器复合的阻尼器(GMM摩擦阻尼器)具有最大的绝对出力和可调范围,利用树脂基磁致伸缩驱动器复合的阻尼器(GMPC摩擦阻尼器)次之,利用压电陶瓷驱动器复合的阻尼器(PZT摩擦阻尼器)最弱。GMM阻尼器和PZT阻尼器的响应时间分别在60 m s-80 m s以及30 m s左右。
Due to possessing character of simple structure,easy installation and steady performance,friction damper has been widely used in different areas.As its performance can not be changed during utilization,a traditional friction damper only has limited control effect on vibration of structures.Piezoelectric material and magnetostrictive material are two kinds of smart materials and possess ability of changing its length under excitation of electric or magnetic field respectively.Utilizing actuator made by above two smart materials to adjust normal force of a friction damper,then to change its friction force,is one of main methods to make friction damper be adjustable during application.Here,three smart friction dampers are made.All the dampers have same structural parameters and their damping force can be respectively adjusted with three actuators which are made by Terfenol-D metal,polymer-bonded Terfenol-D composites and piezoelectric ceramic.The damping force and the response time of the above dampers are tested.Experimental results show that,the friction damper made by Terfenol-D metal(GMM friction damper) possesses the largest adjustable force and adjustable ratio,the adjustable force and adjustable ratio of the friction damper made by polymer-bonded Terfenol-D composites(GMPC friction damper) are a little less than those of GMM friction damper,the friction damper made by piezoelectric(PZT friction damper) possesses the lowest adjustable force and adjustable ratio.Experimental results also show that,the response time of GMM damper and that of PZT damper are close to 60-80ms and 30ms,respectively.
引文
[1]Lu Lyan yawn.Semi-active modal control for seismic struc-tures with variable friction dampers[J].Engineering Struc-tures,2004,26(4):437—454.
    [2]Colajanni P,Papia M.Seismic response of braced frames withand without friction dampers[J].Engineering Structures,1995,17(2):129—40.
    [3]Nishitani A,Nitta Y,Ishibashi Y.Structural control based onsemi-active variable friction dampers[C].Proceedings of the12th World Conferences on Earthquake Engineering,Auck-land,New Zealand.2000,265—276.
    [4]Dupont P,Kasturi P,Stokes A.Semi-active control of frictiondampers[J].Journal of Sound and Vibration,1997,202(2):203—218.
    [5]Agrawal A K,Yang J N.A semi-active electromagnetic fric-tion damper for response control of structures[C].ASCEProceedings of the 2000 Structures Congress and Exposition,Philadelphia,PA.2000,218—225.
    [6]欧进萍.结构振动控制:主动、半主动和智能控制[M].北京:科学出版社,2003.
    [7]Chen G.Behavior of piezoelectric friction dampers under dy-namic loading[C].Proceeding of SPIE,2000,3988:54—63.
    [8]Chen C,Chen G.Semi-active control of a steel frame with pi-ezoelectric friction dampers[C].Proceedings of SPIE,2003,5057:207—217.
    [9]欧进萍,关新春,等.智能型压电(摩擦耗能器[J].地震工程与工程振动,2000,20(1):81—86.
    [10]欧进萍,杨飏.压电-T型变摩擦阻尼器及其性能实验分析[J].地震工程与工程振动,2003,23(4):171—177.
    [11]瞿伟廉,陈朝军,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制[J].地震工程与工程振动,2000,20(1):94—99.
    [12]李立州,胡卫兵.新型压电阻尼器本构模型分析[J].西安建筑科技大学学报,2003,35(2):123—126.
    [13]Li Hong-Nan,Li Jun,Gang bing Song.Improved Bang-bangControl for a New Type of Piezoelectric Friction Damper[(C)].Proceedings of SPIE,2005,Vol.5760:1120—1124.
    [14]吴阳.基于磁致伸缩材料的半主动摩擦阻尼器的设计与应用研究[D]:[学位论文].哈尔滨:哈尔滨工业大学,2007.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心