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A B S T R A C T   

There are abundant coalbed methane (CBM) resources in the western Guizhou Province, China. The high effi-
ciency development of CBM in western Guizhou is restricted to a great extent by multiple and thin coal seams, 
the high in-situ stress and the complex coal texture. By using the mathematical principle of Linear Discriminant 
Analysis (LDA) method, 1508 logging data obtained from three CBM wells are related to their geophysical 
logging responses. Four types of well-logging curves of the natural gamma ray (GR), densities (DEN), acoustic 
logging (AC) and deep lateral resistivity (LLD) were chosen to analyze coal texture. The mathematical method 
reflecting the relationship between typical logging data and coal texture was established, which has a high ac-
curacy for identifying the coal texture of medium-thin coal seams. The results show that tectonic coal in western 
Guizhou is developed and complicated. The coal texture predicted by the established method is in good 
agreement with that of actual coal core, which plays an important role in the joint and efficient development of 
CBM in the multiple and thin coal seams in western Guizhou.   

1. Introduction 

As an alternative clean energy, coalbed methane (CBM) has become 
an important component of unconventional natural gas (Fu et al., 2009a; 
Tao et al., 2012, 2019a; Xu et al., 2016). Permeability of coal reservoirs 
is an important factor affecting CBM yield (Connell et al., 2010; Tao 
et al., 2014, 2019b), while coal texture largely determines coal reservoir 
permeability and closely related to production efficiency (Rutqvist and 
Stephansson, 2003; Min et al., 2004; Hou et al., 2017; Wang et al., 
2018). Moreover, coal texture can also be used to predict gas concen-
tration (Ju and Li, 2009). Therefore, it is very important to clarify the 
changes of coal texture in coal reservoir for the development and eval-
uation of CBM. 

Coal texture can be divided into undeformed coal, cataclastic coal, 
granulated coal and mylonitized coal (Xue et al., 2012; Ren et al., 2018; 
Fu et al., 2009b). Cataclastic coal seam is the most suitable type in the 
process of CBM development, followed by undeformed coal, while 
granulated and mylonitized coals are the worst (Ren et al., 2018). 
Nowadays, the recognition of coal texture is mainly based on the visual 
observation and description of core samples to define the degree of coal 

damage. During the CBM development, due to the high cost of obtaining 
coal cores (Xu et al., 2016), the accurate prediction of coal texture can’t 
be realized in areas where the core is undrilled, while geophysical well 
logging is an economic and convenient method (Li et al., 2016). Ac-
cording to the support of a huge mass of well logs such as caliper logging 
(CAL), natural gamma ray (GR), densities (DEN), acoustic logging (AC) 
and deep lateral resistivity (LLD), the well logging provides continuity 
evaluation of formation characteristics (Yegireddi and Bhaskar, 2009; 
Siregar et al., 2017), which can be used to deeply understand the 
changes of formation property and to establish a link between logging 
data and coal texture. The logging response of coal is characterized by 
low natural gamma, low density, high acoustic time difference, and high 
resistivity (Rai et al., 2004; Xu et al., 2016; Tao et al., 2018a, b; Luo 
et al., 2019). With the increase of coal destruction degree, the values of 
natural gamma and density tend to decrease, while the values of acoustic 
time difference and resistivity tend to increase (Teng et al., 2015; Ren 
et al., 2018; Wang et al., 2018). 

Previous researchers used various logging data to calculate coal 
permeability and ash yield, to identify coal facies, coal macrolithotypes 
and coal property (Yegireddi and Bhaskar, 2009; Li et al., 2016; Zhou 
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Fig. 1. Location of the Panguan syncline and the longitudinal distribution of coal seams in Well 1.  
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and O’Brien, 2016; Siregar et al., 2017; Tao et al., 2019c), and coal 
texture can be characterized as well (Fu et al., 2009a; Teng et al., 2015; 
Li et al., 2016; Wang et al., 2018). At the same time, the effective pre-
diction of coal texture in adjacent wells with similar coal-forming 
environment, tectonic background and material composition can be 
predicted (Fu et al., 2009a). However, the common identification of coal 
texture is mainly aimed at medium-thick coal seams, lacking in-depth 
study on thin coal seams. In addition, the in-situ stress condition in 
western Guizhou is complex (Chen et al., 2017, 2018; Zhou et al., 2019), 
and the coal seams are characterized by multiple layers (Qin et al., 2014; 
Shen et al., 2016), many of the previous evaluation methods are not 
applicable. 

What’s more, compared with previous unsupervised classification 
methods, such as cluster analysis and principal component analysis, LDA 
method can use prior knowledge and experience of categories, in other 
words, through the sample data of the known coal development status in 
this area, the unknown coal body structure can be deduced. Different 
from previous empirical formula method, for the actual research area, 
LDA establishes the calculation formula suitable for the region, which 
can more accurately restore the geological conditions of the area and 
realize the accurate classification of coal texture. 

The current study takes the multiple and thin coal seams from the 
Panguan syncline in western Guizhou as research object. Based on the 
analysis and selecting of logging parameters, a mathematics method was 
used to identify and predict the coal texture of these special coal seams 
in the study area, which provides basis for the reasonable layer selection 
and efficient development of CBM in western Guizhou. 

2. Geological setting 

Panguan syncline is located in the west of Guizhou Province, which 
covers an area of approximately 605 km2 (Chen et al., 2018), belonging 
to the southwest margin of Yangzi block. The Yangzi block underwent 
multi-period tectonic activities including the Indosinian, Yanshan and 
Himalayan movements, resulting in numerous folds, faults, and complex 
coal texture. Moreover, it controls the sedimentary evolution of coal 
seams and the distribution of CBM reservoirs in the current area. 

Series of Late Permian coal seams mainly developed in the upper and 
lower part of Longtan Formation in the Panguan syncline. The thickness 
of Longtan Formation is about 180 m, containing more than 40 layers of 
coal, and 9 of them are local minable coal seams. The thickness of most 
single coal seam is around 1 m. The coal-bearing ratio is 13.98% on 
average and the coal rank changes greatly (0.89% < Ro < 2.18%). In this 
study, the wells in Jinjia (Well 1) and Yueliangtian (Well 2 and Well 3) 
Blocks are selected to do a further research (Fig. 1). 

3. Method and procedure 

3.1. Well logging parameter selection 

To achieve the quantitative and accurate identification of coal 
texture, the logging response of different coal texture should be taken as 
the basis, and the logging data are also be used for comparison and di-
vision. With the increase of coal destruction degree, the logging curve 
also varies regularly (Fu et al., 2009b; Yao et al., 2011; Ren et al., 2018). 
Tectonic coals (cataclastic coal, granulated and mylonitized coals) can 
amplify logging diameter which is reflected in lower GR and DEN, 
higher AC and LLD in logging curves (Fu et al., 2009b; Teng et al., 2015; 
Wang et al., 2018). 

Considering that single logging curve is susceptible to drilling fluid 
and engineering conditions, if the classification of coal texture is con-
ducted according to the data of single logging curve, its accuracy will be 
greatly affected. Therefore, this study selects various logging curve as 
the classification basis to eliminate the influence of single-factor error 
and improves the classification accuracy. Because the CAL is easily 
affected by drilling engineering, the GR, DEN, LLD and AC logging pa-
rameters are selected as the indexes for discriminant analysis. As shown 
in Fig. 2, the LLD and AC show positive correlation with progressive 
damage of coal, while the GR and DEN show negative correlation. 
Moreover, the carbonaceous mudstone is obviously different from other 
curves. 

3.2. The procedure of identification method by LDA theory 

Linear Discriminant Analysis (LDA) is a kind of multivariate statis-
tical analysis method (Cai et al., 2018; Wen et al., 2018), which can 
distinguish each sample accurately based on the thought of variance 
analysis, also known as Fisher Linear Discriminant. Firstly, LDA cate-
gorizes the known sample data, and then select the variables that can 
describe the classified samples more comprehensively. Secondly, ac-
cording to a certain discriminant criterion, the undetermined coefficient 
of the discriminant function is determined based on the data of known 
sample data (training sample set), and one or more discriminant func-
tions are established. The category of undetermined samples (test sam-
ple set) can be determined by the discriminant function with little loss of 
information. 

Meanwhile, LDA uses projection method to project points in the p- 
dimensional space into the one-dimensional space to reduce the 
dimension (Ye et al., 2017; Abuzeina and Al-Anzi, 2018). In the original 
coordinate system, the samples which are difficult to be classified are 
distinguished after the projection. The result of discrimination is able to 

Fig. 2. Logging response characteristics of different coal texture in Well 1.  
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maximize the separation of the groups and make the discrete form 
within groups minimum (Wen et al., 2018). Using a two-group general 
type in Fig. 3 as an example, it can be seen that the classification of 
projection on y1 is obviously better than that of y2. For a new sample, it 
can be classified by the distance between the unknown sample and the 
known sample, and higher discrimination accuracy can be obtained 
easily. 

SPSS (Statistical Product and Service Solutions) software is used for 
discriminant analysis to achieve precise inversion of coal texture ac-
cording to the four variables of GR, LLD, DEN and AC (Nie and Norman, 
1975; Guo, 1999; Su et al., 2000). SPSS is a software package used for 
statistical analysis, data mining, predictive analysis and decision support 
tasks. It has played a great role in various fields of scientific research. 
The software version used in this article is IBM SPSS Statistics 20.0, the 

Fig. 3. Two-dimensional projection diagram (y1 and y2 are different projection directions of data).  

Fig. 4. Workflow of coal texture identification.  
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main function module is “Analyze”→ “Classify”→ “Discriminate”. The 
sequential process is shown in Fig. 4 according to the LDA by using the 
SPSS software. The main steps are: (1) The data of different coal texture 
samples (training sample sets) determined by classification are selected 
as the known information. (2) Linear discriminant functions are deter-
mined by analyzing LLD, AC, GR, DEN. (3) For the unknown coal tex-
tures sample data (testing sample set), the coal textures are classified 
according to the discriminant criterion. 

The detailed mathematical process is as follows (Gao, 2004):  

(1) Projection dimension reduction 
A group named Gt (t ¼ 1  ;…;k) including 4 types (undeformed 

coal, cataclastic coal, granulated and mylonitized coals, and 
carbonaceous mudstone) is established, and each type has 4 
variables of GR, DEN, LLD, and AC. Xt

i ¼ ðxt
i1;…; xt

i4Þ
’ (t ¼ 1 ; …;

 k; i ¼ 1; …;  nt), a ¼ ða1;…; a4 )’ is any vector in four- 

dimensional (GR, DEN, LLD, AC) space, and u(x) ¼  a’X is the 
projection in the X direction in the normal direction of a. As a 
result, these logging data become one-dimensional variable. 

X¼
1
n

Xk

t¼1

Xnt

j¼1
Xt

j (1)  

Xk
¼

1
nk

Xnk

j¼1
Xk

j (2)  

where Xk  and  X are respectively the sample mean and the total 
sample mean of Gt.  
(2) Calculating the inner-class distance and between-class distance 

after the projection 
Unary variance analysis was performed on unary data of group 

k 

B0 ¼
Xk

t¼1
ntða’Xt

� a’XÞ2¼ a’Ba (3)  

where B0 is the sum of squares between groups (The distance be-
tween different coal textures) 

That  is: B¼
Xk

t¼1
ntðX

t
� XÞðXt

� XÞ’ (4)  

A0 ¼
Xk

t¼1

Xnt

j¼1

�
a’Xt

j � a’Xt
�2

¼ a’Aa (5)  

where A0 is the sum of squares within the group (The distance be-
tween same coal textures) 

Fig. 5. Depth correction for drilling and logging after Fu et al. (2009a).  

Fig. 6. Different logging values of coal texture in training samples set.  
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Fig. 7. Average value of logging data of coal texture in training samples set.  

Table 1 
Training sample set data.  

Case 
Number 

Actual 
Group 

Predicted 
Group 

Discriminant Function scores Case 
Number 

Actual 
Group 

Predicted 
Group 

Discriminant Function scores 

F1 F2 F3 F1 F2 F3 

1 A A � 1.134 � 0.813 0.299 41 C C 4.947 � 0.043 2.049 
2 A A � 1.525 � 1.817 0.21 42 C C 5.352 0.289 2.346 
3 A A � 0.753 � 2.041 0.342 43 C C 5.118 0.183 2.603 
4 A A � 0.331 � 1.944 0.487 44 C C 4.756 0.128 2.767 
5 A A � 0.028 � 1.697 0.406 45 C C 5.531 1.753 1.696 
6 A A � 0.421 � 1.484 0.303 46 C C 5.52 1.888 1.691 
7 A A � 0.999 � 1.241 0.119 47 C C 5.863 2.261 1.52 
8 A A � 0.772 � 0.716 � 0.275 48 C C 5.707 2.422 1.503 
9 A A � 0.89 � 0.424 � 0.499 49 C C 5.712 2.456 1.461 
10 A A � 3.195 � 0.773 0.59 50 C C 5.593 2.646 1.35 
11 A A � 2.082 � 0.391 0.414 51 C B* 3.71 � 0.334 � 0.98 
12 A A � 1.067 � 0.143 0.114 52 C C 3.804 � 0.432 � 0.974 
13 A A � 1.054 � 0.293 0.074 53 C C 4.078 � 0.337 � 1.049 
14 A A � 1.64 � 1.744 0.558 54 C C 4.067 � 0.21 � 1.077 
15 A A � 1.456 � 1.351 0.641 55 C C 4.383 0.163 � 1.743 
16 A A � 1.233 � 0.77 0.541 56 C C 4.634 0.125 � 1.764 
17 A A � 1.404 � 0.4 0.472 57 C C 4.618 0.037 � 1.727 
18 A A � 1.778 � 0.369 0.492 58 C C 5.219 0.196 � 1.893 
19 A A � 1.091 � 0.446 0.349 59 C C 4.659 � 0.079 � 1.705 
20 A A � 1.427 � 0.478 0.413 60 C B* 3.711 � 0.316 � 1.459 
21 B B 2.142 � 1.13 0.364 61 D D � 4.489 � 0.429 0.123 
22 B B 1.995 � 1.452 0.302 62 D D � 5.888 � 0.16 0.236 
23 B B 1.191 � 1.929 0.489 63 D D � 4.888 � 1.707 1.04 
24 B B 0.984 � 1.763 0.421 64 D D � 3.68 � 0.382 � 0.089 
25 B B 0.927 � 1.713 0.367 65 D D � 5.151 1.268 � 0.369 
26 B B 1.174 0.005 � 0.449 66 D D � 5.697 1.049 � 0.173 
27 B B 1.598 � 0.026 � 0.532 67 D D � 4.835 0.802 � 0.22 
28 B B 0.723 0.46 � 0.415 68 D D � 4.245 0.603 � 0.189 
29 B A* 0.152 � 1.408 0.6 69 D D � 4.231 � 1.302 0.26 
30 B B 1.316 � 0.142 � 0.508 70 D D � 4.235 � 0.583 0.035 
31 B B 1.874 � 0.057 � 0.699 71 D D � 7.556 2.496 � 0.146 
32 B B 2.261 0.39 � 0.982 72 D D � 8.004 2.409 � 0.1 
33 B B 3.153 0.536 � 1.283 73 D D � 7.549 2.507 � 0.257 
34 B B 3.482 0.702 � 1.487 74 D D � 6.303 1.742 � 0.254 
35 B B 3.331 0.786 � 1.593 75 D D � 5.985 1.363 � 0.125 
36 B B 3.394 0.652 � 1.651 76 D D � 7.21 1.757 � 0.142 
37 B C* 3.749 0.586 � 1.75 77 D D � 5.998 1.071 � 0.135 
38 B B 3.435 0.348 � 1.63 78 D D � 4.551 0.536 � 0.132 
39 B A* 0.361 � 0.525 0.175 79 D D � 4.783 0.483 � 0.125 
40 B A* 0.345 � 1.014 0.277 80 D D � 5.008 � 0.295 0.086 

Notes: groups “A,B,C,D” refer to “undeformed coal”, “cataclastic coal”, “granulated and mylonitized coals”, and “carbonaceous mudstone”, respectively. The meaning 
of “A,B,C,D” in follow figures and tables are the same as Table 1. “Actual Group” refers to the actual classification of coal texture in coal core. “Predicted Group” is the 
classification of the LDA. The symbol “*” represents as misjudged case. 
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That  is:  A¼
Xk

t¼1

Xnt

j¼1

�
Xt

j � Xt
��

Xt
j � Xt

�
’ (6)    

(3) Construction of the target function 
In order to get the best a (optimum projection direction), B0 is 

to be large enough, and A0 is to be as small as possible, therefore, 
the ratio is as follow: 

a’Ba
a’Aa

def ΔðaÞ (7)    

(4) Calculation of a and getting linear discriminant function 
Under Fisher’s rule, the maximum eigenvalue λ1 is corre-

sponding to the eigenvector of a. The discrimination function is 
 Y ¼ u1ðXÞ.  

(5) Discriminate criterion 
For an ungrouped sample X (unknown coal texture), its texture 

is evaluated according to the Mahalanobis distance: 

∣u1ðXÞ � u1
ði1Þ∣

σi1
¼ min

t¼1;…;k
 

∣u1ðXÞ � u1
ðtÞ∣

σt
(8)  

It needs to choose the greatest efficiency of discriminant function. 
If there is a unique i1, then judging X 2Gi1. Otherwise, the 
discriminant function with lower efficiency is chosen. If there is a 
unique i2, then judging X 2Gi2 and so on. Sequentially, the accurate 
identification of the coal texture of ungrouped samples can be 
realized. 

4. Results and discussion 

4.1. Classification of coal texture in training sample set 

Core description is a direct method to identify coal texture. Due to 
the influence of drill stem, there is a deviation between the drilling depth 
and the depth from logging interpretation (Fu et al., 2009a). Therefore, 
correction of deviation plays an important role in improving the accu-
racy of identifying coal texture. The calibration can be calculated from 
the following relationship in Fig. 5, giving 

h2 � h
h’

2 � h’
¼

d
d’ ¼

h2 � h1

h’
2 � h’

1
(9)  

where d and d0 are thicknesses of the coal seam measured by drilling and 
log interpretation. h1, h2 and h are the depths of roof, floor, and sam-
pling point of the coal seam obtained during the core. h1’, h2

0and h0 are 
the depths of roof, floor, and sampling point of the coal seam measured 
during logging interpretation. 

The identification accuracy of logging data in vertical direction can 
reach 0.05 m, and the classification results of coal texture are checked by 
drilling core description. 80 coal cores and their geophysical logging 
data are selected as training sample sets from Well 1 in Jinjia area, 
Panguan syncline, where the data are divided into four groups of un-
deformed coals, cataclastic coals, granulated and mylonitized coals, and 
carbonaceous mudstone, with 20 groups of data in each category. The 
logging data of GR, DEN, LLD and AC are great difference in different 
coal textures. The four types of logging curves all have a regular varia-
tion trend shown in Fig. 6 and Fig. 7, and the value range of each curve 
changes obviously, which is consistent with Fig. 2, indicating that these 
data can be used as the characteristic variable of sample points. 

4.2. Logging application according to the LDA theory 

80 data of four groups in training sample set are processed according 
to LDA theory by SPSS software (Table 1), and the typical discriminant 
function abstracts are as follow (Table 2). The eigenvalue of function 1 is 
15.507, which is much larger than that of function 2, suggesting that the 
classification effect of function 1 is better than that of function 2. The 
significance of both function 1 and function 2 is less than 0.05, indi-
cating that the discriminant results are significantly difference. 
Conversely, the classification effect of function 3 is not obvious, thus it 
has very little information. Actually, Table 2 shows that a joint 
discriminant function 1 and 2 can explain enough original information 
(99.4%), showing a higher level of superiority. The two discriminant 
functions mean that SPSS software reduces all the data to two di-
mensions eventually. 

Table 2 
Typical discriminant function abstracts.  

Function Eigenvalue Variance 
(%) 

Cumulative 
(%) 

Canonical 
Correlation 

Significant 

1 15.507 96.3 96.3 0.969 0.000 
2 0.498 3.1 99.4 0.577 0.000 
3 0.104 0.6 100.0 0.307 0.024 

Notes: “Variance” and “Cumulative” refer to the percentage of the original in-
formation that can be interpreted. When the significant is lower than 0.05, it 
refers to significant difference. 

Table 3 
Unstandardized canonical discriminant function coefficients.  

Variable Discriminant Function Coefficients 

F1 F2 F3 

GR (API) � 0.042 0.028 � 0.001 
LLD (Ω⋅m) 0.003 0.002 0.002 
DEN (g/cm3) � 0.488 � 1.467 1.026 
AC (μs/m) 0.027 0.009 � 0.008 
Constant � 7.080 � 4.377 0.620  

Fig. 8. Typical discriminant function scatter diagram. The X-axis and Y-axis 
refer to F1 and F2, respectively. The circle “O” represents data of 80 training 
sample sets. Four different color circles mean they are divided into four groups, 
which surround the four centroids of “A, B, C, D”. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Discriminant function coefficients can be concluded by SPSS soft-
ware showing in Table 3, and the original data of each sample point can 
be calculated to get the corresponding function coordinate value. The 
advantage is that the original data does not need to be processed. The 
original data can be directly substituted into the function to obtain the 

function value and to determine its location. 
Function 1: 

 F1¼ � 0:042�GRþ 0:003�LLD � 0:488�DENþ 0:027�AC � 7:080 

Function 2: 

Fig. 9. Typical discriminant function territorial map. The X-axis and Y-axis refer to F1 and F2, respectively. The whole region is divided into four regions of “A, B, C, 
D”, and the boundaries of four regions are defined by Mahalanobis distance. 

Table 4 
Training sample set classification results.  

Actual 
Group 

Predicted Group Member Total 

A B C D 

A 20 0 0 0 20 
B 3 16 1 0 20 
C 0 2 18 0 20 
D 0 0 0 20 20  

Table 5 
Cross-validation results.  

Actual 
Group 

Predictive Group Member Total 

A B C D 

A 20 0 0 0 20 
B 3 15 2 0 20 
C 0 3 17 0 20 
D 0 0 0 20 20  
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Fig. 10. Projection distribution diagram and discriminant analysis classification diagram of ungrouped samples of three Wells. The black circles in figures a, c, and e 
correspond to the yellow circles in figures b, d and f. The black circles in figures a, c and e correspond the projections of the test sample set data (ungrouped data) in 
Well 1, Well 2 and Well 3, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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F2¼ 0:028�GRþ 0:002�LLD � 1:467�DENþ 0:009�AC � 4:377 

Function 3: 

F3¼ � 0:001�GRþ 0:002�LLDþ 1:026�DEN � 0:008�ACþ 0:620 

All four groups of sample points are distributed around the group 
centroids in Fig. 8, where the centroid coordinates are A (� 1.214, 
� 0.967), B (1.879, 0.335), C (4.849, 0.640) and D (� 5.514, 0.661), 
respectively. They are clearly distinguished in the coordinate system 
identified by F1 and F2. The area surrounded by numbers and bound-
aries is divided into four regions in Fig. 9. As for the unclassified sam-
ples, the classification of each sample point can be accurately 
determined by calculating the discriminant score of F1 and F2. 

As shown in Table 4, the discrimination results of all undeformed 
coals and carbonaceous mudstones are consistent with actual coal cores 
in Well 1, Panguan syncline. Among 20 cataclastic coal samples, 16 of 
them are accurately discriminated, but three of them are classified into 
undeformed coal, and one is classified into granulated and mylonitized 
coal. Meanwhile, Among 20 granulated and mylonitized coals samples, 
18 of them are correct, but two of them are classified into cataclastic 
coal. Thus, 76 samples are accurately identified based the built method 
and the classification accuracy is 92.5%. In order to further verify the 
accuracy of the classification results from training set, the classification 
results are cross-validated (Table 5), where each case is classified by a 
function derived from other cases. It is found that 90% of the cases are 
classified correctly. For the part of the data that is different from the 
training set classification, it is mainly because the cataclastic coal be-
longs to the transition between the undeformed coal and the granulated 
coal. When the degree of destruction is slightly weak, the coal structure 
is relatively complete, which can be easily identified as undeformed coal 

by visual observation. Conversely, cataclastic coal may be recognized as 
granulated coal when the degree of destruction is slightly strong. The 
reason for the error of the granulated and mylonitized coals is the same. 
Overall, the discrimination results have high accuracy, indicating that 
the discriminant analysis results can be used for prediction. 

4.3. Validation with core and well logging comparisons 

Based on the training sample set data, the method is applied to the 
fully cored Well 1 in the Panguan syncline. After the projection of log-
ging data of all coal seams, the discriminant analysis was carried out 
according to the discriminant criterion. It can be seen that the grouped 
data is distributed around the four groups of centroids. The aggregation 
of the same category of samples is strong, which is helpful for the 
identification of coal texture (Jemwa and Aldrich, 2012). By substituting 
each point data into the above two discriminant functions, the obtained 
coordinates can be distinguished from the classification (Fig. 10a and b). 
The discriminant analysis of Well 2 and Well 3 in the Panguan syncline 
were carried out in the same way (Fig. 10c, d, e, f). In general, the data 
points have a good classification effect in the figure, and are divided into 
four categories in the space. 

Compared with the core identification results of No. 3 coal seam in 
Well 1 and No. 12 coal seam in Well 2, the logging identification results 
have good consistency, and the transition boundaries of coal texture are 
divided clearly. The upper part of No. 3 coal seam mainly develops 
tectonic coal, and the bottom is almost undeformed coal. Carbonaceous 
mudstone with a thickness of about 0.5 m is sandwiched in the unde-
formed coal (Fig. 11). The No. 12 coal seam is greatly affected by in-situ 
stress, with the coal texture of mainly cataclastic coal, and the 

Fig. 11. Comparison of core identification and well logging identification of No. 3 coal seam (4.22 m) in Well 1 for coal texture.  
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Fig. 12. Comparison of core identification and well logging identification of No. 12 coal seam (2.36 m) in Well 2 for coal texture.  

Fig. 13. Well logging identification of multiple and thin coal seams (less than 1 m) in Well 3.  

Z. Zhao et al.                                                                                                                                                                                                                                    



Journal of Petroleum Science and Engineering 185 (2020) 106616

12

development of granulated and mylonitized coals is mainly controlled 
by the strong structural deformation (Fig. 12). As can be seen in Fig. 13, 
lots of coal seams in Well 3 develop undeformed and cataclatic coals, 
though there are some errors, most of them are consistent with core 
observations. 

Table 6 shows the classification of 1508 data points from three wells 
in the Panguan syncline after discriminant analysis. All the logging data 
and classification results of coal texture are checked by coal core 
description and comparison, and accurate inversion of coal texture is 
realized. Among them, Well 1 mainly develops undeformed and cata-
clastic coals and the thickness of them is about 24.75 m, with multiple 
layers of carbonaceous mudstone interposed. Well 2 mainly develops 
cataclastic coals with the total thickness of about 15.5 m, followed by 
the undeformed coal, but carbonaceous mudstone is rarely to be seen. 
The undeformed and cataclastic coals are more common than granu-
lated and mylonitized coals in Well 3, and the thickness of undeformed 
and cataclastic coals is about 13.4 m. The tectonic coal (mainly cata-
clastic coal) is mainly distributed in the Nos. 3, 7, 8, 9, 10, 12, 17, 181 
coal seams of Well 1, in the Nos. 10, 12, 181 coal seams of Well 2, and in 
the Nos. 12, 14, 15, 181 coal seams of Well 3. Most of them are the stable 
and minable coal seam in the Panguan syncline. 

In conclusion, LDA is suitable for inversion of multiple and thin coal 
seams in the Panguan syncline. At the same time, it is also suitable for 
thick coal seams and can accurately identify the carbonaceous mudstone 
in this area. Compared with other inversion methods, LDA has certain 
advantages: (1) It retains as much information as possible of the data 
sample and has no special requirements for the overall distribution. (2) 
Based on the determination of Mahalanobis distance, the LDA theory can 
accurately determine the boundary of different coal textures and reduce 
the occurrence of artificial errors. (3) LDA can be used not only for 
dimensionality reduction, but also for classification, which selects the 
projection direction with the best classification performance. (4) 
Different from the unsupervised dimensionality reduction methods such 
as cluster analysis and principal component analysis, LDA can use the 
prior knowledge and experience of categories in the dimensionality 
reduction process. (5) Compared with some previous empirical for-
mulas, LDA assigns weights to different logging curves according to the 
actual response characteristics of different logging parameters in the 
study area. 

5. Conclusions 

To identify different thickness of coal texture, especially the multiple 
and thin coal seam in the Panguan syncline, four types of logging pa-
rameters are reasonably applied, and the identification method of coal 
texture based on LDA is established. The identification method can take 
full advantage of logging data and improve accuracy as far as possible. 
The method generally shows a good consistency, and the agreement is 
acceptable with limited error. There are some possible reasons, one is 
the coal may be damaged while drilling, so we might make the mistake 
of identifying the destruction degree of coal core by visual observation. 
In addition, the changes of in situ stress, geotemperature field, and 
pressure field and gas-water interaction may inevitably affect the ac-
curacy of logging data. 

By comparison with the core description and drilling log, this method 
is not only applicable to the thick coal seam, but also has high accuracy 
for the identification of multiple and thin coal seam in the Panguan 

syncline. Moreover, it can effectively distinguish the carbonaceous 
mudstone sandwiched in the coal seam. Tectonic coals (cataclastic coal, 
granulated and mylonitized coal) are mainly distributed in the Nos. 10, 
12, and 181 coal seams in the Panguan syncline, and the tectonic coals 
are more developed within the thicker coal seam. 
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